The network structure of cancer ecosystems, bioRxiv, 2017-12-30

Ever since Paget’s seed-and-soil and Ewing’s connectivity hypotheses to explain tumor metastasis (1,2), it has become clear that cancer progression can be envisaged as an ecological phenomenon. This connection has flourished during the past two decades (3–7), giving rise to important insights into the ecology and evolution of cancer progression, with therapeutic implications (8–10). Here, we take a metapopulation view of metastasis (i.e. the migration to and colonization of, habitat patches) and represent it as a bipartite network, distinguishing source patches, or organs that host a primary tumor, and acceptor patches, or organs colonized ultimately from the source through metastasis. Using 20,326, biomedical records obtained from literature, we show that (i) the network structure of cancer ecosystems is non-random, exhibiting a nested subset pattern as has been found both in the distribution of species across islands and island-like habitats (11–13), and in the distribution of among species interactions across different ecological networks (14–16); (ii) similar to ecological networks, there is a heterogeneous distribution of degree (i.e., number of connections associated with a source or acceptor organ); (iii) there is a significant correlation between metastatic incidence (or the frequency with which tumor cells from a source organ colonize an acceptor one) and arterial blood supply, suggesting that more irrigated organs have a higher probability of developing metastasis or being invaded; (iv) there is a positive correlation between metastatic incidence and acceptor organ degree (or number of different tumor-bearing source organs that generate metastasis in a given acceptor organ), and a negative one between acceptor organ degree and number of stem cell divisions, implying that there are preferred sink organs for metastasis and that this could be related to average acceptor organ cell longevity; (v) there is a negative association between organ cell turnover and source organ degree, implying that organs with rapid cell turnovers tend to generate more metastasis, a process akin to the phenomenon of propagule pressure in ecology (17); and (vi) the cancer ecosystem network exhibits a modular structure in both source and acceptor patches, suggesting that some of them share more connections among themselves than with the rest of the network. We show that both niche-related processes occurring at the organ level as well as spatial connectivity and propagule pressure contribute to metastaticspread and result in a non-random cancer network, which exhibits a truncated power law degree distribution, clustering and a nested subset structure. The similarity between the cancer network and ecological networks highlights the importance of ecological approaches in increasing our understanding of patterns in cancer incidence and dynamics, which may lead to new strategies to control tumor spread within the human ecosystem.

biorxiv ecology 0-100-users 2017

Confidence modulates exploration and exploitation in value-based learning, bioRxiv, 2017-12-29

AbstractUncertainty is ubiquitous in cognitive processing, which is why agents require a precise handle on how to deal with the noise inherent in their mental operations. Previous research suggests that people possess a remarkable ability to track and report uncertainty, often in the form of confidence judgments. Here, we argue that humans use uncertainty inherent in their representations of value beliefs to arbitrate between exploration and exploitation. Such uncertainty is reflected in explicit confidence judgments. Using a novel variant of a multi-armed bandit paradigm, we studied how beliefs were formed and how uncertainty in the encoding of these value beliefs (belief confidence) evolved over time. We found that people used uncertainty to arbitrate between exploration and exploitation, reflected in a higher tendency towards exploration when their confidence in their value representations was low. We furthermore found that value uncertainty can be linked to frameworks of metacognition in decision making in two ways. First, belief confidence drives decision confidence—that is people’s evaluation of their own choices. Second, individuals with higher metacognitive insight into their choices were also better at tracing the uncertainty in their environment. Together, these findings argue that such uncertainty representations play a key role in the context of cognitive control.

biorxiv neuroscience 100-200-users 2017

Deep image reconstruction from human brain activity, bioRxiv, 2017-12-29

Machine learning-based analysis of human functional magnetic resonance imaging (fMRI) patterns has enabled the visualization of perceptual content. However, it has been limited to the reconstruction with low-level image bases or to the matching to exemplars. Recent work showed that visual cortical activity can be decoded (translated) into hierarchical features of a deep neural network (DNN) for the same input image, providing a way to make use of the information from hierarchical visual features. Here, we present a novel image reconstruction method, in which the pixel values of an image are optimized to make its DNN features similar to those decoded from human brain activity at multiple layers. We found that the generated images resembled the stimulus images (both natural images and artificial shapes) and the subjective visual content during imagery. While our model was solely trained with natural images, our method successfully generalized the reconstruction to artificial shapes, indicating that our model indeed reconstructs or generates images from brain activity, not simply matches to exemplars. A natural image prior introduced by another deep neural network effectively rendered semantically meaningful details to reconstructions by constraining reconstructed images to be similar to natural images. Furthermore, human judgment of reconstructions suggests the effectiveness of combining multiple DNN layers to enhance visual quality of generated images. The results suggest that hierarchical visual information in the brain can be effectively combined to reconstruct perceptual and subjective images.

biorxiv neuroscience 500+-users 2017

The interaction landscape between transcription factors and the nucleosome, bioRxiv, 2017-12-29

Nucleosomes cover most of the genome and are thought to be displaced by transcription factors (TFs) in regions that direct gene expression. However, the modes of interaction between TFs and nucleosomal DNA remain largely unknown. Here, we use nucleosome consecutive affinity-purification systematic evolution of ligands by exponential enrichment (NCAP-SELEX) to systematically explore interactions between the nucleosome and 220 TFs representing diverse structural families. Consistently with earlier observations, we find that the vast majority of TFs have less access to nucleosomal DNA than to free DNA. The motifs recovered from TFs bound to nucleosomal and free DNA are generally similar; however, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many TFs preferentially bind close to the end of nucleosomal DNA, or to periodic positions at its solvent-exposed side. TFs often also bind nucleosomal DNA in a particular orientation, because the nucleosome breaks the local rotational symmetry of DNA. Some TFs also specifically interact with DNA located at the dyad position where only one DNA gyre is wound, whereas other TFs prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals striking differences in TF binding to free and nucleosomal DNA, and uncovers a rich interaction landscape between the TFs and the nucleosome.

biorxiv systems-biology 100-200-users 2017

Reproducible Bioinformatics Project A community for reproducible bioinformatics analysis pipelines, bioRxiv, 2017-12-27

AbstractBackgroundReproducibility of a research is a key element in the modern science and it is mandatory for any industrial application. It represents the ability of replicating an experiment independently by the location and the operator. Therefore, a study can be considered reproducible only if all used data are available and the exploited computational analysis workflow is clearly described. However, today for reproducing a complex bioinformatics analysis, the raw data and a list of tools used in the workflow could be not enough to guarantee the reproducibility of the results obtained. Indeed, different releases of the same tools andor of the system libraries (exploited by such tools) might lead to sneaky reproducibility issues.ResultsTo address this challenge, we established the Reproducible Bioinformatics Project (RBP), which is a non-profit and open-source project, whose aim is to provide a schema and an infrastructure, based on docker images and R package, to provide reproducible results in Bioinformatics. One or more Docker images are then defined for a workflow (typically one for each task), while the workflow implementation is handled via R-functions embedded in a package available at github repository. Thus, a bioinformatician participating to the project has firstly to integrate herhis workflow modules into Docker image(s) exploiting an Ubuntu docker image developed ad hoc by RPB to make easier this task. Secondly, the workflow implementation must be realized in R according to an R-skeleton function made available by RPB to guarantee homogeneity and reusability among different RPB functions. Moreover shehe has to provide the R vignette explaining the package functionality together with an example dataset which can be used to improve the user confidence in the workflow utilization.ConclusionsReproducible Bioinformatics Project provides a general schema and an infrastructure to distribute robust and reproducible workflows. Thus, it guarantees to final users the ability to repeat consistently any analysis independently by the used UNIX-like architecture.

biorxiv bioinformatics 0-100-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo