Dual Proteome-scale Networks Reveal Cell-specific Remodeling of the Human Interactome, bioRxiv, 2020-01-20
SUMMARYThousands of interactions assemble proteins into modules that impart spatial and functional organization to the cellular proteome. Through affinity-purification mass spectrometry, we have created two proteome-scale, cell-line-specific interaction networks. The first, BioPlex 3.0, results from affinity purification of 10,128 human proteins – half the proteome – in 293T cells and includes 118,162 interactions among 14,586 proteins; the second results from 5,522 immunoprecipitations in HCT116 cells. These networks model the interactome at unprecedented scale, encoding protein function, localization, and complex membership. Their comparison validates thousands of interactions and reveals extensive customization of each network. While shared interactions reside in core complexes and involve essential proteins, cell-specific interactions bridge conserved complexes, likely ‘rewiring’ each cell’s interactome. Interactions are gained and lost in tandem among proteins of shared function as the proteome remodels to produce each cell’s phenotype. Viewable interactively online through BioPlexExplorer, these networks define principles of proteome organization and enable unknown protein characterization.
biorxiv systems-biology 100-200-users 2020Drug mechanism-of-action discovery through the integration of pharmacological and CRISPR screens, bioRxiv, 2020-01-15
AbstractLow success rates during drug development are due in part to the difficulty of defining drug mechanism-of-action and molecular markers of therapeutic activity. Here, we integrated 199,219 drug sensitivity measurements for 397 unique anti-cancer drugs and genome-wide CRISPR loss-of-function screens in 484 cell lines to systematically investigate in cellular drug mechanism-of-action. We observed an enrichment for positive associations between drug sensitivity and knockout of their nominal targets, and by leveraging protein-protein networks we identified pathways that mediate drug response. This revealed an unappreciated role of mitochondrial E3 ubiquitin-protein ligase MARCH5 in sensitivity to MCL1 inhibitors. We also estimated drug on-target and off-target activity, informing on specificity, potency and toxicity. Linking drug and gene dependency together with genomic datasets uncovered contexts in which molecular networks when perturbed mediate cancer cell loss-of-fitness, and thereby provide independent and orthogonal evidence of biomarkers for drug development. This study illustrates how integrating cell line drug sensitivity with CRISPR loss-of-function screens can elucidate mechanism-of-action to advance drug development.
biorxiv systems-biology 0-100-users 2020Prokaryotic Single-Cell RNA Sequencing by In Situ Combinatorial Indexing, bioRxiv, 2019-12-06
AbstractDespite longstanding appreciation of gene expression heterogeneity in isogenic bacterial populations, affordable and scalable technologies for studying single bacterial cells have been limited. While single-cell RNA sequencing (scRNA-seq) has revolutionized studies of transcriptional heterogeneity in diverse eukaryotic systems, application of scRNA-seq to prokaryotic cells has been hindered by their low levels of mRNA, lack of mRNA polyadenylation, and thick cell walls. Here, we present Prokaryotic Expression-profiling by Tagging RNA In Situ and sequencing (PETRI-seq), a high-throughput prokaryotic scRNA-seq pipeline that overcomes these obstacles. PETRI-seq uses in situ combinatorial indexing to barcode transcripts from tens of thousands of cells in a single experiment. We have demonstrated that PETRI-seq effectively captures single cell transcriptomes of Gram-negative and Gram-positive bacteria with high purity and little bias. Although bacteria express only thousands of mRNAs per cell, captured mRNA levels were sufficient to distinguish between the transcriptional states of single cells within isogenic populations. In E. coli, we were able to identify single cells in either stationary or exponential phase and define consensus transcriptomes for these sub-populations. In wild type S. aureus, we detected a rare population of cells undergoing prophage induction. We anticipate that PETRI-seq will be widely useful for studying transcriptional heterogeneity in microbial communities.
biorxiv systems-biology 100-200-users 2019Undulating changes in human plasma proteome across lifespan are linked to disease, bioRxiv, 2019-09-01
Aging is the predominant risk factor for numerous chronic diseases that limit healthspan. Mechanisms of aging are thus increasingly recognized as therapeutic targets. Blood from young mice reverses aspects of aging and disease across multiple tissues, pointing to the intriguing possibility that age-related molecular changes in blood can provide novel insight into disease biology. We measured 2,925 plasma proteins from 4,331 young adults to nonagenarians and developed a novel bioinformatics approach which uncovered profound non-linear alterations in the human plasma proteome with age. Waves of changes in the proteome in the fourth, seventh, and eighth decades of life reflected distinct biological pathways, and revealed differential associations with the genome and proteome of age-related diseases and phenotypic traits. This new approach to the study of aging led to the identification of unexpected signatures and pathways of aging and disease and offers potential pathways for aging interventions.
biorxiv systems-biology 100-200-users 2019Gene networks with transcriptional bursting recapitulate rare transient coordinated expression states in cancer, bioRxiv, 2019-07-17
SUMMARYNon-genetic transcriptional variability at the single-cell level is a potential mechanism for therapy resistance in melanoma. Specifically, rare subpopulations of melanoma cells occupy a transient pre-resistant state characterized by coordinated high expression of several genes. Importantly, these rare cells are able to survive drug treatment and develop resistance. How might these extremely rare states arise and disappear within the population? It is unclear whether the canonical stochastic models of probabilistic transcriptional pulsing can explain this behavior, or if it requires special, hitherto unidentified molecular mechanisms. Here we use mathematical modeling to show that a minimal network comprising of transcriptional bursting and interactions between genes can give rise to rare coordinated high states. We next show that although these states occur across networks of different sizes, they depend strongly on three (out of seven) model parameters and require network connectivity to be ≤ 6. Interestingly, we find that while entry into the rare coordinated high state is initiated by a long transcriptional burst that also triggers entry of other genes, the exit from it occurs through the independent inactivation of individual genes. Finally, our model predicts that increased network connectivity can lead to transcriptionally stable states, which we verify using network inference analysis of experimental data. In sum, we demonstrate that established principles of gene regulation are sufficient to describe this new class of rare cell variability and argue for its general existence in other biological contexts.
biorxiv systems-biology 0-100-users 2019Longitudinal single cell transcriptomics reveals Krt8+ alveolar epithelial progenitors in lung regeneration, bioRxiv, 2019-07-17
Lung injury activates quiescent stem and progenitor cells to regenerate alveolar structures. The sequence and coordination of transcriptional programs during this process has largely remained elusive. Using single cell RNA-seq, we first generated a whole-organ bird’s-eye view on cellular dynamics and cell-cell communication networks during mouse lung regeneration from ∼30,000 cells at six timepoints. We discovered an injury-specific progenitor cell state characterized by Krt8 in flat epithelial cells covering alveolar surfaces. The number of these cells peaked during fibrogenesis in independent mouse models, as well as in human acute lung injury and fibrosis. Krt8+ progenitors featured a highly distinct connectome of receptor-ligand pairs with endothelial cells, fibroblasts, and macrophages. To ‘sky dive’ into epithelial differentiation dynamics, we sequenced >30,000 sorted epithelial cells at 18 timepoints and computationally derived cell state trajectories that were validated by lineage tracing genetic reporter mice. Airway stem cells within the club cell lineage and alveolar type-2 cells underwent transcriptional convergence onto the same Krt8+ progenitor cell state, which later resolved by terminal differentiation into alveolar type-1 cells. We derived distinct transcriptional regulators as key switch points in this process and show that induction of TNF-alphaNFkappaB, p53, and hypoxia driven gene expression programs precede a Sox4, Ctnnb1, and Wwtr1 driven switch towards alveolar type-1 cell fate. We show that epithelial cell plasticity can induce non-gradual transdifferentiation, involving intermediate progenitor cell states that may persist and promote disease if checkpoint signals for terminal differentiation are perturbed.
biorxiv systems-biology 0-100-users 2019