Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing, bioRxiv, 2019-09-13

ABSTRACTThe human immune system relies on highly complex and diverse transcripts and the proteins they encode. These include transcripts for Human Leukocyte Antigen (HLA) class I and II receptors which are essential for selfnon-self discrimination by the immune system as well as transcripts encoding B cell and T cell receptors (BCR and TCR) which recognize, bind, and help eliminate foreign antigens.HLA genes are highly diverse within the human population with each individual possessing two of thousands of different alleles in each of the 9 major HLA genes. Determining which combination of alleles an individual possesses for each HLA gene (high-resolution HLA-typing) is essential to establish donor-recipient compatibility in organ and bone-marrow transplantations. BCR and TCR genes in turn are generated by recombining a diverse set of gene segments on the DNA level in each maturing B and T cell, respectively. This process generates adaptive immune receptor repertoires (AIRR) of composed of unique transcripts expressed by each B and T cells. These repertoires carry a vast amount of health relevant information. Both short-read RNA-seq based HLA-typing1 and adaptive immune receptor repertoire sequencing2–5 currently rely heavily on our incomplete knowledge of the genetic diversity at HLA6 and BCRTCR loci7,8.Here we used our nanopore sequencing based Rolling Circle toConcatemeric Consensus (R2C2) protocol9 to generate over 10,000,000 full-length cDNA sequences at a median accuracy of 97.9%. We used this dataset to demonstrate that deep and accurate full-length cDNA sequencing can - in addition to providing isoform-level transcriptome analysis for over 9,000 loci - be used to generate accurate sequences of HLA alleles for HLA allele typing and discovery as well as detailed AIRR data for the analysis of the adaptive immune system without requiring specific knowledge of the diversity at HLA and BCRTCR loci.

biorxiv genomics 0-100-users 2019

Hormonal and neural correlates of care in active versus observing poison frog parents, bioRxiv, 2019-09-11

The occasional reversal of sex-typical behavior suggests that many of the neural circuits underlying behavior are conserved between males and females and can be activated in response to the appropriate social condition or stimulus. Most poison frog species (Family Dendrobatidae) exhibit male uniparental care, but flexible compensation has been observed in some species, where females will take over parental care duties when males disappear. We investigated hormonal and neural correlates of sex-typical and sex-reversed parental care in a typically male uniparental species, the Dyeing Poison Frog (Dendrobates tinctorius). We first characterized hormone levels and whole brain gene expression across parental care stages during sex-typical care. Surprisingly, hormonal changes and brain gene expression differences associated with active parental behavior in males were mirrored in their non-caregiving female partners. To further explore the disconnect between neuroendocrine patterns and behavior, we characterized hormone levels and neural activity patterns in females performing sex-reversed parental care. In contrast to hormone and gene expression patterns, we found that patterns of neural activity were linked to the active performance of parental behavior, with sex-reversed tadpole transporting females exhibiting neural activity patterns more similar to those of transporting males than non-caregiving females. We suggest that parallels in hormones and brain gene expression in active and observing parents are related to females ability to flexibly take over parental care in the absence of their male partners.

biorxiv neuroscience 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo