Real-time DNA barcoding in a remote rainforest using nanopore sequencing, bioRxiv, 2017-09-16

AbstractAdvancements in portable scientific instruments provide promising avenues to expedite field work in order to understand the diverse array of organisms that inhabit our planet. Here we tested the feasibility for in situ molecular analyses of endemic fauna using a portable laboratory fitting within a single backpack, in one of the world’s most imperiled biodiversity hotspots the Ecuadorian Chocó rainforest. We utilized portable equipment, including the MinION DNA sequencer (Oxford Nanopore Technologies) and miniPCR (miniPCR), to perform DNA extraction, PCR amplification and real-time DNA barcode sequencing of reptile specimens in the field. We demonstrate that nanopore sequencing can be implemented in a remote tropical forest to quickly and accurately identify species using DNA barcoding, as we generated consensus sequences for species resolution with an accuracy of >99% in less than 24 hours after collecting specimens. In addition, we generated sequence information at Universidad Tecnológica Indoamérica in Quito for the recently re-discovered Jambato toad Atelopus ignescens, which was thought to be extinct for 28 years, a rare species of blind snake Trilepida guayaquilensis, and two undescribed species of Dipsas snakes. In this study we establish how mobile laboratories and nanopore sequencing can help to accelerate species identification in remote areas (especially for species that are difficult to diagnose based on characters of external morphology), be applied to local research facilities in developing countries, and rapidly generate information for species that are rare, endangered and undescribed, which can potentially aid in conservation efforts.

biorxiv evolutionary-biology 100-200-users 2017

Genomic basis for RNA alterations revealed by whole-genome analyses of 27 cancer types, bioRxiv, 2017-09-04

AbstractWe present the most comprehensive catalogue of cancer-associated gene alterations through characterization of tumor transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes project. Using matched whole-genome sequencing data, we attributed RNA alterations to germline and somatic DNA alterations, revealing likely genetic mechanisms. We identified 444 associations of gene expression with somatic non-coding single-nucleotide variants. We found 1,872 splicing alterations associated with somatic mutation in intronic regions, including novel exonization events associated with Alu elements. Somatic copy number alterations were the major driver of total gene and allele-specific expression (ASE) variation. Additionally, 82% of gene fusions had structural variant support, including 75 of a novel class called “bridged” fusions, in which a third genomic location bridged two different genes. Globally, we observe transcriptomic alteration signatures that differ between cancer types and have associations with DNA mutational signatures. Given this unique dataset of RNA alterations, we also identified 1,012 genes significantly altered through both DNA and RNA mechanisms. Our study represents an extensive catalog of RNA alterations and reveals new insights into the heterogeneous molecular mechanisms of cancer gene alterations.

biorxiv genomics 100-200-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo