Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage, bioRxiv, 2015-10-17
AbstractGenome assemblies that are accurate, complete, and contiguous are essential for identifying important structural and functional elements of genomes and for identifying genetic variation. Nevertheless, most recent genome assemblies remain incomplete and fragmented. While long molecule sequencing promises to deliver more complete genome assemblies with fewer gaps, concerns about error rates, low yields, stringent DNA requirements, and uncertainty about best practices may discourage many investigators from adopting this technology. Here, in conjunction with the platinum standard Drosophila melanogaster reference genome, we analyze recently published long molecule sequencing data to identify what governs completeness and contiguity of genome assemblies. We also present a hybrid meta-assembly approach that achieves remarkable assembly contiguity for both Drosophila and human assemblies with only modest long molecule sequencing coverage. Our results motivate a set of preliminary best practices for obtaining accurate and contiguous assemblies, a “missing manual” that guides key decisions in building high quality de novo genome assemblies, from DNA isolation to polishing the assembly.
biorxiv genomics 100-200-users 2015Extensive sequencing of seven human genomes to characterize benchmark reference materials, bioRxiv, 2015-09-16
The Genome in a Bottle Consortium, hosted by the National Institute of Standards and Technology (NIST) is creating reference materials and data for human genome sequencing, as well as methods for genome comparison and benchmarking. Here, we describe a large, diverse set of sequencing data for seven human genomes; five are current or candidate NIST Reference Materials. The pilot genome, NA12878, has been released as NIST RM 8398. We also describe data from two Personal Genome Project trios, one of Ashkenazim Jewish ancestry and one of Chinese ancestry. The data come from 12 technologies BioNano Genomics, Complete Genomics paired-end and LFR, Ion Proton exome, Oxford Nanopore, Pacific Biosciences, SOLiD, 10X Genomics GemCodeTM WGS, and Illumina exome and WGS paired-end, mate-pair, and synthetic long reads. Cell lines, DNA, and data from these individuals are publicly available. Therefore, we expect these data to be useful for revealing novel information about the human genome and improving sequencing technologies, SNP, indel, and structural variant calling, and de novo assembly.
biorxiv genomics 100-200-users 2015Modeling of RNA-seq fragment sequence bias reduces systematic errors in transcript abundance estimation, bioRxiv, 2015-08-30
RNA-seq technology is widely used in biomedical and basic science research. These studies rely on complex computational methods that quantify expression levels for observed transcripts. We find that current computational methods can lead to hundreds of false positive results related to alternative isoform usage. This flaw in the current methodology stems from a lack of modeling sample-specific bias that leads to drops in coverage and is related to sequence features like fragment GC content and GC stretches. By incorporating features that explain this bias into transcript expression models, we greatly increase the specificity of transcript expression estimates, with more than a four-fold reduction in the number of false positives for reported changes in expression. We introduce alpine, a method for estimation of bias-corrected transcript abundance. The method is available as a Bioconductor package that includes data visualization tools useful for bias discovery.
biorxiv bioinformatics 100-200-users 2015Salmon provides accurate, fast, and bias-aware transcript expression estimates using dual-phase inference, bioRxiv, 2015-06-28
We introduce Salmon, a new method for quantifying transcript abundance from RNA-seq reads that is highly-accurate and very fast. Salmon is the first transcriptome-wide quantifier to model and correct for fragment GC content bias, which we demonstrate substantially improves the accuracy of abundance estimates and the reliability of subsequent differential expression analysis compared to existing methods that do not account for these biases. Salmon achieves its speed and accuracy by combining a new dual-phase parallel inference algorithm and feature-rich bias models with an ultra-fast read mapping procedure. These innovations yield both exceptional accuracy and order-of-magnitude speed benefits over alignment-based methods.
biorxiv bioinformatics 100-200-users 2015Streaming algorithms for identification of pathogens and antibiotic resistance potential from real-time MinIONTM sequencing, bioRxiv, 2015-05-16
AbstractThe recently introduced Oxford Nanopore MinION platform generates DNA sequence data in real-time. This opens immense potential to shorten the sample-to-results time and is likely to lead to enormous benefits in rapid diagnosis of bacterial infection and identification of drug resistance. However, there are very few tools available for streaming analysis of real-time sequencing data. Here, we present a framework for streaming analysis of MinION real-time sequence data, together with probabilistic streaming algorithms for species typing, multi-locus strain typing, gene presence strain-typing and antibiotic resistance profile identification. Using three culture isolate samples as well as a mixed-species sample, we demonstrate that bacterial species and strain information can be obtained within 30 minutes of sequencing and using about 500 reads, initial drug-resistance profiles within two hours, and complete resistance profiles within 10 hours. Multi-locus strain typing required more than 15x coverage to generate confident assignments, whereas gene-presence typing could detect the presence of a known strain with 0.5x coverage. We also show that our pipeline can process over 100 times more data than the current throughput of the MinION on a desktop computer.
biorxiv bioinformatics 100-200-users 2015A Chronological Atlas of Natural Selection in the Human Genome during the Past Half-million Years, bioRxiv, 2015-05-06
The spatiotemporal distribution of recent human adaptation is a long standing question. We developed a new coalescent-based method that collectively assigned human genome regions to modes of neutrality or to positive, negative, or balancing selection. Most importantly, the selection times were estimated for all positive selection signals, which ranged over the last half million years, penetrating the emergence of anatomically modern human (AMH). These selection time estimates were further supported by analyses of the genome sequences from three ancient AMHs and the Neanderthals. A series of brain function-related genes were found to carry signals of ancient selective sweeps, which may have defined the evolution of cognitive abilities either before Neanderthal divergence or during the emergence of AMH. Particularly, signals of brain evolution in AMH are strongly related to Alzheimer's disease pathways. In conclusion, this study reports a chronological atlas of natural selection in Human.
biorxiv evolutionary-biology 100-200-users 2015