Isolation of nucleic acids from low biomass samples detection and removal of sRNA contaminants, bioRxiv, 2017-12-15

ABSTRACTBackgroundSequencing-based analyses of low-biomass samples are known to be prone to misinterpretation due to the potential presence of contaminating molecules derived from laboratory reagents and environments. Due to its inherent instability, contamination with RNA is usually considered to be unlikely.ResultsHere we report the presence of small RNA (sRNA) contaminants in widely used microRNA extraction kits and means for their depletion. Sequencing of sRNAs extracted from human plasma samples was performed and significant levels of non-human (exogenous) sequences were detected. The source of the most abundant of these sequences could be traced to the microRNA extraction columns by qPCR-based analysis of laboratory reagents. The presence of artefactual sequences originating from the confirmed contaminants were furthermore replicated in a range of published datasets. To avoid artefacts in future experiments, several protocols for the removal of the contaminants were elaborated, minimal amounts of starting material for artefact-free analyses were defined, and the reduction of contaminant levels for identification of bona fide sequences using ‘ultraclean’ extraction kits was confirmed.ConclusionThis is the first report of the presence of RNA molecules as contaminants in laboratory reagents. The described protocols should be applied in the future to avoid confounding sRNA studies.

biorxiv molecular-biology 100-200-users 2017

Estimating the functional dimensionality of neural representations, bioRxiv, 2017-12-14

AbstractRecent advances in multivariate fMRI analysis stress the importance of information inherent to voxel patterns. Key to interpreting these patterns is estimating the underlying dimensionality of neural representations. Dimensions may correspond to psychological dimensions, such as length and orientation, or involve other coding schemes. Unfortunately, the noise structure of fMRI data inflates dimensionality estimates and thus makes it difficult to assess the true underlying dimensionality of a pattern. To address this challenge, we developed a novel approach to identify brain regions that carry reliable task-modulated signal and to derive an estimate of the signal’s functional dimensionality. We combined singular value decomposition with cross-validation to find the best low-dimensional projection of a pattern of voxel-responses at a single-subject level. Goodness of the low-dimensional reconstruction is measured as Pearson correlation with a test set, which allows to test for significance of the low-dimensional reconstruction across participants. Using hierarchical Bayesian modeling, we derive the best estimate and associated uncertainty of underlying dimensionality across participants. We validated our method on simulated data of varying underlying dimensionality, showing that recovered dimensionalities match closely true dimensionalities. We then applied our method to three published fMRI data sets all involving processing of visual stimuli. The results highlight three possible applications of estimating the functional dimensionality of neural data. Firstly, it can aid evaluation of model-based analyses by revealing which areas express reliable, task-modulated signal that could be missed by specific models. Secondly, it can reveal functional differences across brain regions. Thirdly, knowing the functional dimensionality allows assessing task-related differences in the complexity of neural patterns.

biorxiv neuroscience 100-200-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo