The Mastery Rubric for Bioinformatics supporting design and evaluation of career-spanning education and training, bioRxiv, 2019-06-02

AbstractAs the life sciences have become more data intensive, the pressure to incorporate the requisite training into life-science education and training programs has increased. To facilitate curriculum development, various sets of (bio)informatics competencies have been articulated; however, these have proved difficult to implement in practice. Addressing this issue, we have created a curriculum-design and -evaluation tool to support the development of specific Knowledge, Skills and Abilities (KSAs) that reflect the scientific method and promote both bioinformatics practice and the achievement of competencies. Twelve KSAs were extracted via formal analysis, and stages along a developmental trajectory, from uninitiated student to independent practitioner, were identified. Demonstration of each KSA by a performer at each stage was initially described (Performance Level Descriptors, PLDs), evaluated, and revised at an international workshop. This work was subsequently extended and further refined to yield the Mastery Rubric for Bioinformatics (MR-Bi). The MR-Bi was validated by demonstrating alignment between the KSAs and competencies, and its consistency with principles of adult learning. The MR-Bi tool provides a formal framework to support curriculum building, training, and self-directed learning. It prioritizes the development of independence and scientific reasoning, and is structured to allow individuals (regardless of career stage, disciplinary background, or skill level) to locate themselves within the framework. The KSAs and their PLDs promote scientific problem formulation and problem solving, lending the MR-Bi durability and flexibility. With its explicit developmental trajectory, the tool can be used by developing or practicing scientists to direct their (and their team’s) acquisition of new, or to deepen existing, bioinformatics KSAs. The MR-Bi can thereby contribute to the cultivation of a next generation of bioinformaticians who are able to design reproducible and rigorous research, and to critically analyze results from their own, and others’, work.

biorxiv scientific-communication-and-education 200-500-users 2019

Species-specific oscillation periods of human and mouse segmentation clocks are due to cell autonomous differences in biochemical reaction parameters, bioRxiv, 2019-05-26

AbstractWhile the mechanisms of embryonic development are similar between mouse and human, the tempo is in general slower in human. The cause of interspecies differences in developmental time remains a mystery partly due to lack of an appropriate model system1. Since murine and human embryos differ in their sizes, geometries, and nutrients, we use in vitro differentiation of pluripotent stem cells (PSCs) to compare the same type of cells between the species in similar culture conditions. As an example of well-defined developmental time, we focus on the segmentation clock, oscillatory gene expression that regulates the timing of sequential formation of body segments2–4. In this way we recapitulate the murine and human segmentation clocks in vitro, showing that the species-specific oscillation periods are derived from cell autonomous differences in the speeds of biochemical reactions. Presomitic mesoderm (PSM)-like cells induced from murine and human PSCs displayed the oscillatory expression of HES7, the core gene of the segmentation clock5,6, with oscillation periods of 2-3 hours (mouse PSM) and 5-6 hours (human PSM). Swapping HES7 loci between murine and human genomes did not change the oscillation periods dramatically, denying the possibility that interspecies differences in the sequences of HES7 loci might be the cause of the observed period difference. Instead, we found that the biochemical reactions that determine the oscillation period, such as the degradation of HES7 and delays in its expression, are slower in human PSM compared with those in mouse PSM. With the measured biochemical parameters, our mathematical model successfully accounted for the 2-3-fold period difference between mouse and human. We further demonstrate that the concept of slower biochemical reactions in human cells is generalizable to several other genes, as well as to another cell type. These results collectively indicate that differences in the speeds of biochemical reactions between murine and human cells give rise to the interspecies period difference of the segmentation clock and may contribute to other interspecies differences in developmental time.

biorxiv developmental-biology 200-500-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo