Single cell epigenomic atlas of the developing human brain and organoids, bioRxiv, 2020-01-01

AbstractDynamic changes in chromatin accessibility coincide with important aspects of neuronal differentiation, such as fate specification and arealization and confer cell type-specific associations to neurodevelopmental disorders. However, studies of the epigenomic landscape of the developing human brain have yet to be performed at single-cell resolution. Here, we profiled chromatin accessibility of >75,000 cells from eight distinct areas of developing human forebrain using single cell ATAC-seq (scATACseq). We identified thousands of loci that undergo extensive cell type-specific changes in accessibility during corticogenesis. Chromatin state profiling also reveals novel distinctions between neural progenitor cells from different cortical areas not seen in transcriptomic profiles and suggests a role for retinoic acid signaling in cortical arealization. Comparison of the cell type-specific chromatin landscape of cerebral organoids to primary developing cortex found that organoids establish broad cell type-specific enhancer accessibility patterns similar to the developing cortex, but lack many putative regulatory elements identified in homologous primary cell types. Together, our results reveal the important contribution of chromatin state to the emerging patterns of cell type diversity and cell fate specification and provide a blueprint for evaluating the fidelity and robustness of cerebral organoids as a model for cortical development.

biorxiv developmental-biology 100-200-users 2020

Self-organised symmetry breaking in zebrafish reveals feedback from morphogenesis to pattern formation, bioRxiv, 2019-09-14

A fundamental question in developmental biology is how the early embryo breaks initial symmetry to establish the spatial coordinate system later important for the organisation of the embryonic body plan. In zebrafish, this is thought to depend on the inheritance of maternal mRNAs [1–3], cortical rotation to generate a dorsal pole of beta-catenin activity [4–8] and the release of Nodal signals from the yolk syncytial layer (YSL) [9–12]. Recent work aggregating mouse embryonic stem cells has shown that symmetry breaking can occur in the absence of extra-embryonic tissue [19,20]. To test whether this is also true in zebrafish, we separated embryonic cells from the yolk and allowed them to develop as aggregates. These aggregates break symmetry autonomously to form elongated structures with an anterior-posterior pattern. Extensive cell mixing shows that any pre-existing asymmetry is lost prior to the breaking morphological symmetry, revealing that the maternal pre-pattern is not strictly required for early embryo patterning. Following early signalling events after isolation of embryonic cells reveals that a pole of Nodal activity precedes and is required for elongation. The blocking of PCP-dependent convergence and extension movements disrupts the establishment of opposing poles of BMP and WntTCF activity and the patterning of anterior-posterior neural tissue. These results lead us to suggest that convergence and extension plays a causal role in the establishment of morphogen gradients and pattern formation during zebrafish gastrulation.

biorxiv developmental-biology 0-100-users 2019

Interspecies transcriptome analyses identify genes that control the development and evolution of limb skeletal proportion, bioRxiv, 2019-09-01

AbstractDespite the great diversity of vertebrate limb proportion and our deep understanding of the genetic mechanisms that drive skeletal elongation, little is known about how individual bones reach different lengths in any species. Here, we directly compare the transcriptomes of homologous growth cartilages of the mouse (Mus musculus) and bipedal jerboa (Jaculus jaculus), which has extremely long metatarsals of the feet and ‘mouse-like’ arms. When we intersected gene expression differences in metatarsals of the two species with expression differences in forearms, we found that about 10% of all orthologous genes are associated with disproportionate elongation of jerboa feet. Among these, Shox2, has gained expression in jerboa metatarsals where it is not expressed in other vertebrates that have been assessed. This transcription factor is necessary for proximal limb elongation, and we show that it is sufficient to increase mouse distal limb length. Unexpectedly, we also found evidence that jerboa foot elongation occurs in part by releasing latent growth potential that is repressed in mouse feet. In jerboa metatarsals, we observed higher expression of Crabp1, an antagonist of growth inhibitory retinoic acid, lower expression of Gdf10, an inhibitory TGFβ ligand, and lower expression of Mab21L2, a BMP signaling inhibitor that we show is sufficient to reduce limb bone elongation. By intersecting our data with prior expression analyses in other systems, we identify mechanisms that may both establish limb proportion during development and diversify proportion during evolution. The genes we identified here therefore provide a framework to understand the modular genetic control of skeletal growth and the remarkable malleability of vertebrate limb proportion.

biorxiv developmental-biology 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo