Programmed DNA elimination of germline development genes in songbirds, bioRxiv, 2018-10-16

Genomes can vary within individual organisms. Programmed DNA elimination leads to dramatic changes in genome organisation during the germline-soma differentiation of ciliates, lampreys, nematodes, and various other eukaryotes. A particularly remarkable example of tissue-specific genome differentiation is the germline-restricted chromosome (GRC) in the zebra finch which is consistently absent from somatic cells. Although the zebra finch is an important animal model system, molecular evidence from its large GRC (>150 megabases) is limited to a short intergenic region and a single mRNA. Here, we combined cytogenetic, genomic, transcriptomic, and proteomic evidence to resolve the evolutionary origin and functional significance of the GRC. First, by generating tissue-specific de-novo linked-read genome assemblies and re-sequencing two additional germline and soma samples, we found that the GRC contains at least 115 genes which are paralogous to single-copy genes on 18 autosomes and the Z chromosome. We detected an amplification of 38 GRC-linked genes into high copy numbers (up to 308 copies) but, surprisingly, no enrichment of transposable elements on the GRC. Second, transcriptome and proteome data provided evidence for functional expression of GRC genes at the RNA and protein levels in testes and ovaries. Interestingly, the GRC is enriched for genes with highly expressed orthologs in chicken gonads and gene ontologies involved in female gonad development. Third, we detected evolutionary strata of GRC-linked genes. Genes such as bicc1 and trim71 have resided on the GRC for tens of millions of years, whereas dozens have become GRC-linked very recently. The GRC is thus likely widespread in songbirds (half of all bird species) and its rapid evolution may have contributed to their diversification. Together, our results demonstrate a highly dynamic evolutionary history of the songbird GRC leading to dramatic germline-soma genome differences as a novel mechanism to minimize genetic conflict between germline and soma.

biorxiv evolutionary-biology 200-500-users 2018

The Dynamic Conformational Landscapes of the Protein Methyltransferase SETD8, bioRxiv, 2018-10-13

Elucidating conformational heterogeneity of proteins is essential for understanding protein functions and developing exogenous ligands for chemical perturbation. While structural biology methods can provide atomic details of static protein structures, these approaches cannot in general resolve less populated, functionally relevant conformations and uncover conformational kinetics. Here we demonstrate a new paradigm for illuminating dynamic conformational landscapes of target proteins. SETD8 (Pr-SET7SET8KMT5A) is a biologically relevant protein lysine methyltransferase for in vivo monomethylation of histone H4 lysine 20 and nonhistone targets. Utilizing covalent chemical inhibitors and depleting native ligands to trap hidden high-energy conformational states, we obtained diverse novel X-ray structures of SETD8. These structures were used to seed massively distributed molecular simulations that generated six milliseconds of trajectory data of SETD8 in the presence or absence of its cofactor. We used an automated machine learning approach to reveal slow conformational motions and thus distinct conformational states of SETD8, and validated the resulting dynamic conformational landscapes with multiple biophysical methods. The resulting models provide unprecedented mechanistic insight into how protein dynamics plays a role in SAM binding and thus catalysis, and how this function can be modulated by diverse cancer-associated mutants. These findings set up the foundation for revealing enzymatic mechanisms and developing inhibitors in the context of conformational landscapes of target proteins.

biorxiv biophysics 200-500-users 2018

Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Supplementary Information, bioRxiv, 2018-10-09

Major depression is a debilitating psychiatric illness that is typically associated with low mood, anhedonia and a range of comorbidities. Depression has a heritable component that has remained difficult to elucidate with current sample sizes due to the polygenic nature of the disorder. To maximise sample size, we meta-analysed data on 807,553 individuals (246,363 cases and 561,190 controls) from the three largest genome-wide association studies of depression. We identified 102 independent variants, 269 genes, and 15 gene-sets associated with depression, including both genes and gene-pathways associated with synaptic structure and neurotransmission. Further evidence of the importance of prefrontal brain regions in depression was provided by an enrichment analysis. In an independent replication sample of 1,306,354 individuals (414,055 cases and 892,299 controls), 87 of the 102 associated variants were significant following multiple testing correction. Based on the putative genes associated with depression this work also highlights several potential drug repositioning opportunities. These findings advance our understanding of the complex genetic architecture of depression and provide several future avenues for understanding aetiology and developing new treatment approaches.

biorxiv genetics 200-500-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo