The interaction landscape between transcription factors and the nucleosome, bioRxiv, 2017-12-29

Nucleosomes cover most of the genome and are thought to be displaced by transcription factors (TFs) in regions that direct gene expression. However, the modes of interaction between TFs and nucleosomal DNA remain largely unknown. Here, we use nucleosome consecutive affinity-purification systematic evolution of ligands by exponential enrichment (NCAP-SELEX) to systematically explore interactions between the nucleosome and 220 TFs representing diverse structural families. Consistently with earlier observations, we find that the vast majority of TFs have less access to nucleosomal DNA than to free DNA. The motifs recovered from TFs bound to nucleosomal and free DNA are generally similar; however, steric hindrance and scaffolding by the nucleosome result in specific positioning and orientation of the motifs. Many TFs preferentially bind close to the end of nucleosomal DNA, or to periodic positions at its solvent-exposed side. TFs often also bind nucleosomal DNA in a particular orientation, because the nucleosome breaks the local rotational symmetry of DNA. Some TFs also specifically interact with DNA located at the dyad position where only one DNA gyre is wound, whereas other TFs prefer sites spanning two DNA gyres and bind specifically to each of them. Our work reveals striking differences in TF binding to free and nucleosomal DNA, and uncovers a rich interaction landscape between the TFs and the nucleosome.

biorxiv systems-biology 100-200-users 2017

Reproducible Bioinformatics Project A community for reproducible bioinformatics analysis pipelines, bioRxiv, 2017-12-27

AbstractBackgroundReproducibility of a research is a key element in the modern science and it is mandatory for any industrial application. It represents the ability of replicating an experiment independently by the location and the operator. Therefore, a study can be considered reproducible only if all used data are available and the exploited computational analysis workflow is clearly described. However, today for reproducing a complex bioinformatics analysis, the raw data and a list of tools used in the workflow could be not enough to guarantee the reproducibility of the results obtained. Indeed, different releases of the same tools andor of the system libraries (exploited by such tools) might lead to sneaky reproducibility issues.ResultsTo address this challenge, we established the Reproducible Bioinformatics Project (RBP), which is a non-profit and open-source project, whose aim is to provide a schema and an infrastructure, based on docker images and R package, to provide reproducible results in Bioinformatics. One or more Docker images are then defined for a workflow (typically one for each task), while the workflow implementation is handled via R-functions embedded in a package available at github repository. Thus, a bioinformatician participating to the project has firstly to integrate herhis workflow modules into Docker image(s) exploiting an Ubuntu docker image developed ad hoc by RPB to make easier this task. Secondly, the workflow implementation must be realized in R according to an R-skeleton function made available by RPB to guarantee homogeneity and reusability among different RPB functions. Moreover shehe has to provide the R vignette explaining the package functionality together with an example dataset which can be used to improve the user confidence in the workflow utilization.ConclusionsReproducible Bioinformatics Project provides a general schema and an infrastructure to distribute robust and reproducible workflows. Thus, it guarantees to final users the ability to repeat consistently any analysis independently by the used UNIX-like architecture.

biorxiv bioinformatics 0-100-users 2017

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo