Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types, bioRxiv, 2017-01-26
ABSTRACTGenetics can provide a systematic approach to discovering the tissues and cell types relevant for a complex disease or trait. Identifying these tissues and cell types is critical for following up on non-coding allelic function, developing ex-vivo models, and identifying therapeutic targets. Here, we analyze gene expression data from several sources, including the GTEx and PsychENCODE consortia, together with genome-wide association study (GWAS) summary statistics for 48 diseases and traits with an average sample size of 169,331, to identify disease-relevant tissues and cell types. We develop and apply an approach that uses stratified LD score regression to test whether disease heritability is enriched in regions surrounding genes with the highest specific expression in a given tissue. We detect tissue-specific enrichments at FDR < 5% for 34 diseases and traits across a broad range of tissues that recapitulate known biology. In our analysis of traits with observed central nervous system enrichment, we detect an enrichment of neurons over other brain cell types for several brain-related traits, enrichment of inhibitory over excitatory neurons for bipolar disorder but excitatory over inhibitory neurons for schizophrenia and body mass index, and enrichments in the cortex for schizophrenia and in the striatum for migraine. In our analysis of traits with observed immunological enrichment, we identify enrichments of T cells for asthma and eczema, B cells for primary biliary cirrhosis, and myeloid cells for Alzheimer's disease, which we validated with independent chromatin data. Our results demonstrate that our polygenic approach is a powerful way to leverage gene expression data for interpreting GWAS signal.
biorxiv genetics 0-100-users 2017Mass-spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation, bioRxiv, 2017-01-25
Cellular heterogeneity is important to biological processes, including cancer and development. However, proteome heterogeneity is largely unexplored because of the limitations of existing methods for quantifying protein levels in single cells. To alleviate these limitations, we developed Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS), and validated its ability to identify distinct human cancer cell types based on their proteomes. We used SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem (ES) cells. The single-cell proteomes enabled us to deconstruct cell populations and infer protein abundance relationships. Comparison between single-cell proteomes and transcriptomes indicated coordinated mRNA and protein covariation. Yet many genes exhibited functionally concerted and distinct regulatory patterns at the mRNA and the protein levels, suggesting that post-transcriptional regulatory mechanisms contribute to proteome remodeling during lineage specification, especially for developmental genes. SCoPE-MS is broadly applicable to measuring proteome configurations of single cells and linking them to functional phenotypes, such as cell type and differentiation potentials.
biorxiv genomics 200-500-users 2017DNA-dependent RNA cleavage by the Natronobacterium gregoryi Argonaute, bioRxiv, 2017-01-21
AbstractWe show here that, unlike most other prokaryotic Argonaute (Ago) proteins, which are DNA-guided endonucleases, the Natronobacterium gregoryi-derived Ago (NgAgo) can function as a DNA-guided endoribonuclease, cleaving RNA, rather than DNA, in a targeted manner. The NgAgo protein, in complex with 5’-hydroxylated or 5’-phosphrylated oligodeoxyribonucleotides (ODNs) of variable lengths, split RNA targets into two or more fragments in vitro, suggesting its physiological role in bacteria and demonstrating a potential for degrading RNA molecules such as mRNA or lncRNA in eukaryotic cells in a targeted manner.
biorxiv biochemistry 0-100-users 2017Rapid de novo assembly of the European eel genome from nanopore sequencing reads, bioRxiv, 2017-01-21
AbstractWe have sequenced the genome of the endangered European eel using the MinION by Oxford Nanopore, and assembled these data using a novel algorithm specifically designed for large eukaryotic genomes. For this 860 Mbp genome, the entire computational process takes two days on a single CPU. The resulting genome assembly significantly improves on a previous draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) and structural quality. This combination of affordable nanopore sequencing and light-weight assembly promises to make high-quality genomic resources accessible for many non-model plants and animals.
biorxiv genomics 100-200-users 2017Genome Graphs, bioRxiv, 2017-01-19
AbstractThere is increasing recognition that a single, monoploid reference genome is a poor universal reference structure for human genetics, because it represents only a tiny fraction of human variation. Adding this missing variation results in a structure that can be described as a mathematical graph a genome graph. We demonstrate that, in comparison to the existing reference genome (GRCh38), genome graphs can substantially improve the fractions of reads that map uniquely and perfectly. Furthermore, we show that this fundamental simplification of read mapping transforms the variant calling problem from one in which many non-reference variants must be discovered de-novo to one in which the vast majority of variants are simply re-identified within the graph. Using standard benchmarks as well as a novel reference-free evaluation, we show that a simplistic variant calling procedure on a genome graph can already call variants at least as well as, and in many cases better than, a state-of-the-art method on the linear human reference genome. We anticipate that graph-based references will supplant linear references in humans and in other applications where cohorts of sequenced individuals are available.
biorxiv bioinformatics 100-200-users 2017Modern human origins multiregional evolution of autosomes and East Asia origin of Y and mtDNA, bioRxiv, 2017-01-19
AbstractThe neutral theory has been used as a null model for interpreting nature and produced the Recent Out of Africa model of anatomically modern humans. Recent studies, however, have established that genetic diversities are mostly at maximum saturation levels maintained by selection, therefore challenging the explanatory power of the neutral theory and rendering the present molecular model of human origins untenable. Using improved methods and public data, we have revisited human evolution and found sharing of genetic variations among racial groups to be largely a result of parallel mutations rather than recent common ancestry and admixture as commonly assumed. We derived an age of 1.86-1.92 million years for the first split in modern human populations based on autosomal diversity data. We found evidence of modern Y and mtDNA originating in East Asia and dispersing via hybridization with archaic humans. Analyses of autosomes, Y and mtDNA all suggest that Denisovan and Neanderthal were archaic Africans with Eurasian admixtures and ancestors of South Asia Negritos and Aboriginal Australians. Verifying our model, we found more ancestry of Southern Chinese from Hunan in Africans relative to other East Asian groups examined. These results suggest multiregional evolution of autosomes and replacements of archaic Y and mtDNA by modern ones originating in East Asia, thereby leading to a coherent account of modern human origins.
biorxiv evolutionary-biology 0-100-users 2017