Climate or disturbance temperate forest structural change and carbon sink potential, bioRxiv, 2018-11-27

ABSTRACTAnticipating forest responses to changing climate and disturbance regimes requires understanding long-term successional processes and aggregating these local processes into global relevance. Estimates of existing forest structure and biomass are improving globally; however, vegetation models continue to show substantial spread in predictions of future land carbon uptake and the roles of forest structural change and demography are increasingly being recognized as important. To identify mechanisms that drive change in tree size, density, and carbon, we need a better understanding of forest structural trajectories and the factors that affect those trajectories. Here we reveal a coherent, cyclic pattern of structural change in temperate forests, as predicted by successional theory, and identify significant sensitivity to climatic precipitation and temperature anomalies using large datasets and empirical modeling. For example, in the eastern US above average temperature (+1°C) was associated with a 27% (−0.4±0.1 Mg C ha-1 yr-1) reduction in productivity attributed to higher rates of disease (+23%), weather disturbance (+57%), and sapling mortality. Projections of future vegetative carbon sink potential suggests biomass would be lowest on managed lands (72±2 Mg C ha-1) and highest when larger trees survive in undisturbed conditions (153±21 Mg C ha-1). Overall, the indirect effects of disturbance and mortality were considerably larger than the direct effects of climate on productivity when predicting future vegetative carbon sinks. Results provide robust comparisons for global vegetation models, and valuable projections for management and carbon mitigation efforts.

biorxiv ecology 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo