On the adaptive behavior of head-fixed flies navigating in two-dimensional, visual virtual reality, bioRxiv, 2018-11-05

AbstractA navigating animal’s sensory experience is shaped not just by its surroundings, but by its movements within them, which in turn are influenced by its past experiences. Studying the intertwined roles of sensation, experience and directed action in navigation has been made easier by the development of virtual reality (VR) environments for head-fixed animals, which allow for quantitative measurements of behavior in well-controlled sensory conditions. VR has long featured in studies of Drosophila melanogaster, but these experiments have typically relied on one-dimensional (1D) VR, effectively allowing the fly to change only its heading in a visual scene, and not its position. Here we explore how flies navigate in a two-dimensional (2D) visual VR environment that more closely resembles their experience during free behavior. We show that flies’ interaction with landmarks in 2D environments cannot be automatically derived from their behavior in simpler 1D environments. Using a novel paradigm, we then demonstrate that flies in 2D VR adapt their behavior in a visual environment in response to optogenetically delivered appetitive and aversive stimuli. Much like free-walking flies after encounters with food, head-fixed flies respond to optogenetic activation of sugar-sensing neurons by initiating a local search behavior. Finally, by pairing optogenetic activation of heat-sensing cells to the flies’ presence near visual landmarks of specific shapes, we elicit selective learned avoidance of landmarks associated with aversive “virtual heat”. These head-fixed paradigms set the stage for an interrogation of fly brain circuitry underlying flexible navigation in complex visual environments.

biorxiv animal-behavior-and-cognition 0-100-users 2018

tartan underlies the evolution of male Drosophila genital morphology, bioRxiv, 2018-11-05

AbstractMale genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic basis of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here we show that natural variation in clasper size and bristle number between Drosophila mauritiana and D. simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell-cell interactions and affinity differences. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans but differences in the expression of this gene in developing genitalia suggest cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analysis of reciprocal hemizyotes that are genetically identical, except for which species the functional allele of trn is from, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore we have identified the first gene underlying evolutionary change in the size of a male genital organ, which will help to better understand the rapid diversification of these structures and the regulation and evolution of organ size more broadly.Significance StatementThe morphology of male genital organs evolves rapidly driven by sexual selection. However, little is known about the genes underlying genitalia differences between species. Identifying these genes is key to understanding how sexual selection acts on development to produce rapid phenotypic change. We have found that the gene tartan underlies differences between male Drosophila mauritiana and D. simulans in the size and bristle number of the claspers - genital projections that grasp the female during copulation. Moreover, since tartan encodes a protein that is involved in cell affinity, this may represent a new developmental mechanism for morphological change. Therefore, our study provides new insights into genetic and developmental bases for the rapid evolution of male genitalia and organ size more generally.

biorxiv evolutionary-biology 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo