A comparison of eDNA to camera trapping for assessment of terrestrial mammal diversity, bioRxiv, 2019-05-11

AbstractEnvironmental DNA (eDNA) is one of the most promising approaches to meet the demand for the fast and frequent monitoring of ecosystems needed to tackle the current decline in biodiversity. However, before eDNA can establish itself as a robust alternative for mammal monitoring, comparison with existing approaches is necessary, yet has not been done. Moreover, much is unknown regarding the nature, spread and persistence of DNA shed by animals into terrestrial environments, or the optimal experimental design for understanding these potential biases.To address some of these challenges, we compared the detection of terrestrial mammals using eDNA analysis of soil samples against confirmed species observations from a long-term (∼9-yr) camera trapping study. At the same time, we considered multiple experimental parameters, including two sampling designs, two DNA extraction kits and two metabarcodes of different sizes.All mammals consistently recorded with cameras were detected in eDNA. In addition, eDNA reported many small mammals not recorded by camera traps, but whose presence in the study area is otherwise documented. A long metabarcode (≈220bp) offering a high taxonomic resolution, achieved a similar efficiency as a shorter one (≈70bp) and a phosphate buffer-based extraction gave similar results as a total DNA extraction method for a fraction of the price. Our results support that eDNA-based monitoring should become a valuable part of terrestrial mammal surveys. Yet, the lack of coverage of mammal mitochondrial genomes in public databases must be addressed before eDNA can be used to its full potential.

biorxiv ecology 200-500-users 2019

Jumping To Conclusions, General Intelligence, And Psychosis Liability Findings From The Multi-Centre EU-GEI Case-Control Study, bioRxiv, 2019-05-11

AbstractBackgroundThe “jumping to conclusions” (JTC) bias is associated with both psychosis and general cognition but their relationship is unclear. In this study, we set out to clarify the relationship between the JTC bias, IQ, psychosis and polygenic liability to schizophrenia and IQ.Methods817 FEP patients and 1294 population-based controls completed assessments of general intelligence (IQ), and JTC (assessed by the number of beads drawn on the probabilistic reasoning “beads” task) and provided blood or saliva samples from which we extracted DNA and computed polygenic risk scores for IQ and schizophrenia.ResultsThe estimated proportion of the total effect of casecontrol differences on JTC mediated by IQ was 79%. Schizophrenia Polygenic Risk Score (SZ PRS) was non-significantly associated with a higher number of beads drawn (B= 0.47, 95% CI −0.21 to 1.16, p=0.17); whereas IQ PRS (B=0.51, 95% CI 0.25 to 0.76, p<0.001) significantly predicted the number of beads drawn, and was thus associated with reduced JTC bias. The JTC was more strongly associated with higher level of psychotic-like experiences (PLE) in controls, including after controlling for IQ (B= −1.7, 95% CI −2.8 to −0.5, p=0.006), but did not relate to delusions in patients.Conclusionsthe JTC reasoning bias in psychosis is not a specific cognitive deficit but is rather a manifestation or consequence, of general cognitive impairment. Whereas, in the general population, the JTC bias is related to psychotic-like experiences, independent of IQ. The work has potential to inform interventions targeting cognitive biases in early psychosis.

biorxiv neuroscience 0-100-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo