Task-evoked activity quenches neural correlations and variability in large-scale brain systems, bioRxiv, 2019-02-26

Many studies of large-scale neural systems have emphasized the importance of communication through increased inter-region correlations (functional connectivity) during task states relative to resting state. In contrast, local circuit studies have demonstrated that task states reduce correlations among local neural populations, likely enhancing their information coding. Here we sought to adjudicate between these conflicting perspectives, assessing whether large-scale system correlations tend to increase or decrease during task states. To establish a mechanistic framework for interpreting changes in neural correlations, we conceptualized neural populations as having a sigmoidal neural transfer function. In a computational model we found that this straightforward assumption predicts reductions in neural populations' dynamic output range as task-evoked activity levels increase, reducing responsiveness to inputs from other regions (i.e., reduced correlations). We demonstrated this empirically in large-scale neural populations across two highly distinct data sets human functional magnetic resonance imaging data and non-human primate spiking data. We found that task states increased global neural activity, while globally quenching neural variability and correlations. Further, this global reduction of neural correlations led to an overall increase in dimensionality (reflecting less information redundancy) during task states, providing an information-theoretic explanation for task-induced correlation reductions. Together, our results provide an integrative mechanistic account that encompasses measures of large-scale neural activity, variability, and correlations during resting and task states.

biorxiv neuroscience 0-100-users 2019

Accurate inference of tree topologies from multiple sequence alignments using deep learning, bioRxiv, 2019-02-25

AbstractReconstructing the phylogenetic relationships between species is one of the most formidable tasks in evolutionary biology. Multiple methods exist to reconstruct phylogenetic trees, each with their own strengths and weaknesses. Both simulation and empirical studies have identified several “zones” of parameter space where accuracy of some methods can plummet, even for four-taxon trees. Further, some methods can have undesirable statistical properties such as statistical inconsistency andor the tendency to be positively misleading (i.e. assert strong support for the incorrect tree topology). Recently, deep learning techniques have made inroads on a number of both new and longstanding problems in biological research. Here we designed a deep convolutional neural network (CNN) to infer quartet topologies from multiple sequence alignments. This CNN can readily be trained to make inferences using both gapped and ungapped data. We show that our approach is highly accurate on simulated data, often outperforming traditional methods, and is remarkably robust to bias-inducing regions of parameter space such as the Felsenstein zone and the Farris zone. We also demonstrate that the confidence scores produced by our CNN can more accurately assess support for the chosen topology than bootstrap and posterior probability scores from traditional methods. While numerous practical challenges remain, these findings suggest that deep learning approaches such as ours have the potential to produce more accurate phylogenetic inferences.

biorxiv evolutionary-biology 100-200-users 2019

Antibiotic production in Streptomyces is organized by a division of labour through terminal genomic differentiation, bioRxiv, 2019-02-25

AbstractOne of the hallmark behaviors of social groups is division of labour, where different group members become specialized to carry out complementary tasks. By dividing labour, cooperative groups of individuals increase their efficiency, thereby raising group fitness even if these specialized behaviors reduce the fitness of individual group members. Here we provide evidence that antibiotic production in colonies of the multicellular bacterium Streptomyces coelicolor is coordinated by a division of labour. We show that S. coelicolor colonies are genetically heterogeneous due to massive amplifications and deletions to the chromosome. Cells with gross chromosomal changes produce an increased diversity of secondary metabolites and secrete significantly more antibiotics; however, these changes come at the cost of dramatically reduced individual fitness, providing direct evidence for a trade-off between secondary metabolite production and fitness. Finally, we show that colonies containing mixtures of mutant strains and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. Our work demonstrates that by generating mutants that are specialized to hyper-produce antibiotics, streptomycetes reduce the colony-wide fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.

biorxiv evolutionary-biology 100-200-users 2019

Antibiotic production is organized by a division of labour in Streptomyces, bioRxiv, 2019-02-25

AbstractOne of the hallmark behaviors of social groups is division of labour, where different group members become specialized to carry out complementary tasks. By dividing labour, cooperative groups of individuals increase their efficiency, thereby raising group fitness even if these specialized behaviors reduce the fitness of individual group members. Here we provide evidence that antibiotic production in colonies of the multicellular bacterium Streptomyces coelicolor is coordinated by a division of labour. We show that S. coelicolor colonies are genetically heterogenous due to massive amplifications and deletions to the chromosome. Cells with gross chromosomal changes produce an increased diversity of secondary metabolites and secrete significantly more antibiotics; however, these changes come at the cost of dramatically reduced individual fitness, providing direct evidence for a trade-off between secondary metabolite production and fitness. Finally, we show that colonies containing mixtures of mutant strains and their parents produce significantly more antibiotics, while colony-wide spore production remains unchanged. Our work demonstrates that by generating mutants that are specialized to hyper-produce antibiotics, streptomycetes reduce the colony-wide fitness costs of secreted secondary metabolites while maximizing the yield and diversity of these products.

biorxiv evolutionary-biology 100-200-users 2019

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo