RAxML-NG A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference, bioRxiv, 2018-10-19

AbstractMotivationPhylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture, and medicine. Finding the optimal tree under the popular maximum like-lihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical datasets.ResultsWe present RAxML-NG, a from scratch re-implementation of the established greedy tree search algorithm of RAxMLExaML. RAxML- NG offers improved accuracy, flexibility, speed, scalability, and usability compared to RAxMLExaML. On taxon-rich datasets, RAxML-NG typically finds higher-scoring trees than IQTree, an increasingly popular recent tool for ML-based phylogenetic inference (although IQ-Tree shows better stability). Finally, RAxML-NG introduces several new features, such as the detection of terraces in tree space and a the recently introduced transfer bootstrap support metric.AvailabilityThe code is available under GNU GPL at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comamkozlovraxml-ng.RAxML-NG>httpsgithub.comamkozlovraxml-ng.RAxML-NG<jatsext-link> web service (maintained by Vital- IT) is available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsraxml-ng.vital-it.ch>httpsraxml-ng.vital-it.ch<jatsext-link>.Contactalexey.kozlov@h-its.org

biorxiv bioinformatics 200-500-users 2018

Diversification and collapse of a telomere elongation mechanism, bioRxiv, 2018-10-18

AbstractIn virtually all eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert preferentially at telomeres. This exchange of goods between host and mobile element—wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation—has been called a ‘genomic symbiosis’. However, these telomere-specialized, ‘jockey’ family elements may actually evolve to selfishly over-replicate in the genomes that they ostensibly serve. Under this intra-genomic conflict model, we expect rapid diversification of telomere-specialized retrotransposon lineages and possibly, the breakdown of this tenuous relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-million-year-old ‘melanogaster species group’, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this striking retrotransposon lineage diversity. Moreover, an ancestrally telomere-specialized element has ‘escaped,’ residing now throughout the genome of D. rhopaloa. In D. biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long-reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Combined with previous reports of adaptive evolution at host proteins that regulate telomere length, telomere-associated retrotransposon diversification and disappearance offer compelling evidence that intra-genomic conflict shapes Drosophila telomere evolution.

biorxiv evolutionary-biology 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo