RAxML-NG A fast, scalable, and user-friendly tool for maximum likelihood phylogenetic inference, bioRxiv, 2018-10-19
AbstractMotivationPhylogenies are important for fundamental biological research, but also have numerous applications in biotechnology, agriculture, and medicine. Finding the optimal tree under the popular maximum like-lihood (ML) criterion is known to be NP-hard. Thus, highly optimized and scalable codes are needed to analyze constantly growing empirical datasets.ResultsWe present RAxML-NG, a from scratch re-implementation of the established greedy tree search algorithm of RAxMLExaML. RAxML- NG offers improved accuracy, flexibility, speed, scalability, and usability compared to RAxMLExaML. On taxon-rich datasets, RAxML-NG typically finds higher-scoring trees than IQTree, an increasingly popular recent tool for ML-based phylogenetic inference (although IQ-Tree shows better stability). Finally, RAxML-NG introduces several new features, such as the detection of terraces in tree space and a the recently introduced transfer bootstrap support metric.AvailabilityThe code is available under GNU GPL at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsgithub.comamkozlovraxml-ng.RAxML-NG>httpsgithub.comamkozlovraxml-ng.RAxML-NG<jatsext-link> web service (maintained by Vital- IT) is available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpsraxml-ng.vital-it.ch>httpsraxml-ng.vital-it.ch<jatsext-link>.Contactalexey.kozlov@h-its.org
biorxiv bioinformatics 200-500-users 2018Transposon accumulation lines uncover histone H2A.Z-driven integration bias towards environmentally responsive genes, bioRxiv, 2018-10-19
Inherited transposition events are important drivers of genome evolution but because transposable element (TE) mobilization is usually rare, its impact on the creation of genetic variation remains poorly characterized. Here, we used a population of A. thaliana epigenetic recombinant inbred lines (epiRILs) to characterize >8000 de novo insertions produced by several TEs families also active in nature. Integration was strongly biased towards genes, with evident deleterious effects. Biases were TE family-specific and associated with distinct chromatin features. Notably, we demonstrate that the histone variant H2A.Z guides the preferential integration of Ty1Copia LTR-retrotransposons within environmentally responsive genes and that this guiding function is evolutionary conserved. Finally, we uncover an important role for epigenetic silencing in exacerbating or alleviating the effects of TE insertions on target genes. These findings establish chromatin as a major determinant of the spectrum and functional impact of TE-generated mutations, with important implications for adaptation and evolution.
biorxiv genomics 0-100-users 2018Unraveling the polygenic architecture of complex traits using blood eQTL meta-analysis, bioRxiv, 2018-10-19
While many disease-associated variants have been identified through genome-wide association studies, their downstream molecular consequences remain unclear. To identify these effects, we performed cis- and trans-expression quantitative trait locus (eQTL) analysis in blood from 31,684 individuals through the eQTLGen Consortium. We observed that cis-eQTLs can be detected for 88% of the studied genes, but that they have a different genetic architecture compared to disease-associated variants, limiting our ability to use cis-eQTLs to pinpoint causal genes within susceptibility loci. In contrast, trans-eQTLs (detected for 37% of 10,317 studied trait-associated variants) were more informative. Multiple unlinked variants, associated to the same complex trait, often converged on trans-genes that are known to play central roles in disease etiology. We observed the same when ascertaining the effect of polygenic scores calculated for 1,263 genome-wide association study (GWAS) traits. Expression levels of 13% of the studied genes correlated with polygenic scores, and many resulting genes are known to drive these traits.
biorxiv genomics 200-500-users 2018Unraveling the polygenic architecture of complex traits using blood eQTL metaanalysis, bioRxiv, 2018-10-19
SummaryWhile many disease-associated variants have been identified through genome-wide association studies, their downstream molecular consequences remain unclear.To identify these effects, we performed cis- and trans-expression quantitative trait locus (eQTL) analysis in blood from 31,684 individuals through the eQTLGen Consortium.We observed that cis-eQTLs can be detected for 88% of the studied genes, but that they have a different genetic architecture compared to disease-associated variants, limiting our ability to use cis-eQTLs to pinpoint causal genes within susceptibility loci.In contrast, trans-eQTLs (detected for 37% of 10,317 studied trait-associated variants) were more informative. Multiple unlinked variants, associated to the same complex trait, often converged on trans-genes that are known to play central roles in disease etiology.We observed the same when ascertaining the effect of polygenic scores calculated for 1,263 genome-wide association study (GWAS) traits. Expression levels of 13% of the studied genes correlated with polygenic scores, and many resulting genes are known to drive these traits.
biorxiv genomics 200-500-users 2018A stable, long-term cortical signature underlying consistent behavior, bioRxiv, 2018-10-18
AbstractAnimals readily execute learned motor behaviors in a consistent manner over long periods of time, yet similarly stable neural correlates remained elusive up to now. How does the cortex achieve this stable control? Using the sensorimotor system as a model of cortical processing, we investigated the hypothesis that the dynamics of neural latent activity, which capture the dominant co-variation patterns within the neural population, are preserved across time. We recorded from populations of neurons in premotor, primary motor, and somatosensory cortices for up to two years as monkeys performed a reaching task. Intriguingly, despite steady turnover in the recorded neurons, the low-dimensional latent dynamics remained stable. Such stability allowed reliable decoding of behavioral features for the entire timespan, while fixed decoders based on the recorded neural activity degraded substantially. We posit that latent cortical dynamics within the manifold are the fundamental and stable building blocks underlying consistent behavioral execution.
biorxiv neuroscience 100-200-users 2018Diversification and collapse of a telomere elongation mechanism, bioRxiv, 2018-10-18
AbstractIn virtually all eukaryotes, telomerase counteracts chromosome erosion by adding repetitive sequence to terminal ends. Drosophila melanogaster instead relies on specialized retrotransposons that insert preferentially at telomeres. This exchange of goods between host and mobile element—wherein the mobile element provides an essential genome service and the host provides a hospitable niche for mobile element propagation—has been called a ‘genomic symbiosis’. However, these telomere-specialized, ‘jockey’ family elements may actually evolve to selfishly over-replicate in the genomes that they ostensibly serve. Under this intra-genomic conflict model, we expect rapid diversification of telomere-specialized retrotransposon lineages and possibly, the breakdown of this tenuous relationship. Here we report data consistent with both predictions. Searching the raw reads of the 15-million-year-old ‘melanogaster species group’, we generated de novo jockey retrotransposon consensus sequences and used phylogenetic tree-building to delineate four distinct telomere-associated lineages. Recurrent gains, losses, and replacements account for this striking retrotransposon lineage diversity. Moreover, an ancestrally telomere-specialized element has ‘escaped,’ residing now throughout the genome of D. rhopaloa. In D. biarmipes, telomere-specialized elements have disappeared completely. De novo assembly of long-reads and cytogenetics confirmed this species-specific collapse of retrotransposon-dependent telomere elongation. Instead, telomere-restricted satellite DNA and DNA transposon fragments occupy its terminal ends. We infer that D. biarmipes relies instead on a recombination-based mechanism conserved from yeast to flies to humans. Combined with previous reports of adaptive evolution at host proteins that regulate telomere length, telomere-associated retrotransposon diversification and disappearance offer compelling evidence that intra-genomic conflict shapes Drosophila telomere evolution.
biorxiv evolutionary-biology 0-100-users 2018