Collective intercellular communication through ultra-fast hydrodynamic trigger waves, bioRxiv, 2018-09-27

The biophysical relationships between sensors and actuators have been fundamental to the development of complex life forms; abundant flows are generated and persist in aquatic environments by swimming organisms, while responding promptly to external stimuli is key to survival. Here, akin to a chain reaction, we present the discovery of hydrodynamic trigger waves in cellular communities of the protist Spirostomum ambiguum, propagating hundreds of times faster than the swimming speed. Coiling its cytoskeleton, Spirostomum can contract its long body by 50% within milliseconds, with accelerations reaching 14g-forces. Surprisingly, a single cellular contraction (transmitter) is shown to generate long-ranged vortex flows at intermedi- ate Reynolds numbers, which can trigger neighbouring cells, in turn. To measure the sensitivity to hydrodynamic signals (receiver), we further present a high-throughput suction-flow device to probe mechanosensitive ion channel gating by back-calculating the microscopic forces on the cell mem- brane. These ultra-fast hydrodynamic trigger waves are analysed and modelled quantitatively in a universal framework of antenna and percolation theory. A phase transition is revealed, requiring a critical colony density to sustain collective communication. Our results suggest that this signalling could help organise cohabiting communities over large distances, influencing long-term behaviour through gene expression, comparable to quorum sensing. More immediately, as contractions release toxins, synchronised discharges could also facilitate the repulsion of large predators, or conversely immobilise large prey. We postulate that beyond protists numerous other freshwater and marine organisms could coordinate with variations of hydrodynamic trigger waves.

biorxiv biophysics 200-500-users 2018

PlotsOfData – a web app for visualizing data together with its summaries, bioRxiv, 2018-09-27

AbstractReporting of the actual data in graphs and plots increases transparency and enables independent evaluation. On the other hand, data summaries are often used in graphs since they aid interpretation. State-of-the art data visualizations can be made with the ggplot2 package, which uses the ideas of a ‘grammar of graphics’ to generate a graphic from multiple layers of data. However, ggplot2 requires coding skills and an understanding of the tidy data structure. To democratize state-of-the-art data visualization of raw data with a selection of statistical summaries, a web app was written using Rshiny that uses the ggplot2 package for generating plots. A multilayered approach together with adjustable transparency offers a unique flexibility, enabling users can to choose how to display the data and which of the data summaries to add. Four data summaries are provided, mean, median, boxplot, violinplot, to accommodate several types of data distributions. In addition, 95% confidence intervals can be added for visual inferences. By adjusting the transparency of the layers, the visualization of the raw data together with the summary can be tuned for optimal presentation and interpretation. The app is dubbed PlotsOfData and is available at <jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpshuygens.science.uva.nlPlotsOfData>httpshuygens.science.uva.nlPlotsOfData<jatsext-link><jatsfig id=ufig1 position=float orientation=portrait fig-type=figure><jatsgraphic xmlnsxlink=httpwww.w3.org1999xlink xlinkhref=426767v3_ufig1 position=float orientation=portrait >

biorxiv scientific-communication-and-education 0-100-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo