Measuring narrative engagement The heart tells the story, bioRxiv, 2018-06-20
AbstractStories play a fundamental role in human culture. They provide a mechanism for sharing cultural identity, imparting knowledge, revealing beliefs, reinforcing social bonds and providing entertainment that is central to all human societies. Here we investigated the extent to which the delivery medium of a story (audio or visual) affected conscious and subconscious engagement with the narrative. Although participants self-reported greater involvement for watching video relative to listening to auditory scenes, stronger physiological responses were recorded for auditory stories. Sensors placed at their wrists showed higher and more variable heart rates, greater electrodermal activity, and even higher body temperatures. We interpret these findings as physiological evidence that the stories were more cognitively and emotionally engaging when presented in an auditory format. This may be because listening to a story, rather than watching a video, is a more active process of co-creation, and that this imaginative process in the listener’s mind is detectable on the skin at their wrist.
biorxiv neuroscience 0-100-users 2018Robust genome editing with short single-stranded and long, partially single-stranded DNA donors in C. elegans, bioRxiv, 2018-06-20
AbstractCRISPR-based genome editing using ribonucleoprotein (RNP) complexes and synthetic single stranded oligodeoxynucleotide (ssODN) donors can be highly effective. However, reproducibility can vary, and precise, targeted integration of longer constructs – such as green fluorescent protein (GFP) tags remains challenging in many systems. Here we describe a streamlined and optimized editing protocol for the nematode C. elegans. We demonstrate its efficacy, flexibility, and cost-effectiveness by affinity-tagging all twelve of the Worm-specific Argonaute (WAGO) proteins in C. elegans using ssODN donors. In addition, we describe a novel PCR-based partially single-stranded “hybrid” donor design that yields high efficiency editing with large (kilobase-scale) constructs. We use these hybrid donors to introduce fluorescent protein tags into multiple loci achieving editing efficiencies that approach those previously obtained only with much shorter ssODN donors. The principals and strategies described here are likely to translate to other systems and should allow researchers to reproducibly and efficiently obtain both long and short precision genome edits.
biorxiv genetics 200-500-users 2018Towards reconstructing intelligible speech from the human auditory cortex, bioRxiv, 2018-06-19
AbstractAuditory stimulus reconstruction is a technique that finds the best approximation of the acoustic stimulus from the population of evoked neural activity. Reconstructing speech from the human auditory cortex creates the possibility of a speech neuroprosthetic to establish a direct communication with the brain and has been shown to be possible in both overt and covert conditions. However, the low quality of the reconstructed speech has severely limited the utility of this method for brain-computer interface (BCI) applications. To advance the state-of-the-art in speech neuroprosthesis, we combined the recent advances in deep learning with the latest innovations in speech synthesis technologies to reconstruct closed-set intelligible speech from the human auditory cortex. We investigated the dependence of reconstruction accuracy on linear and nonlinear (deep neural network) regression methods and the acoustic representation that is used as the target of reconstruction, including auditory spectrogram and speech synthesis parameters. In addition, we compared the reconstruction accuracy from low and high neural frequency ranges. Our results show that a deep neural network model that directly estimates the parameters of a speech synthesizer from all neural frequencies achieves the highest subjective and objective scores on a digit recognition task, improving the intelligibility by 65% over the baseline method which used linear regression to reconstruct the auditory spectrogram. These results demonstrate the efficacy of deep learning and speech synthesis algorithms for designing the next generation of speech BCI systems, which not only can restore communications for paralyzed patients but also have the potential to transform human-computer interaction technologies.
biorxiv neuroscience 0-100-users 2018Re-identification of genomic data using long range familial searches, bioRxiv, 2018-06-18
AbstractConsumer genomics databases reached the scale of millions of individuals. Recently, law enforcement investigators have started to exploit some of these databases to find distant familial relatives, which can lead to a complete re-identification. Here, we leveraged genomic data of 600,000 individuals tested with consumer genomics to investigate the power of such long-range familial searches. We project that half of the searches with European-descent individuals will result with a third cousin or closer match and will provide a search space small enough to permit re-identification using common demographic identifiers. Moreover, in the near future, virtually any European-descent US person could be implicated by this technique. We propose a potential mitigation strategy based on cryptographic signature that can resolve the issue and discuss policy implications to human subject research.
biorxiv genomics 500+-users 2018Altering the temporal regulation of one transcription factor drives sensory trade-offs, bioRxiv, 2018-06-16
SUMMARYSize trade-offs of visual versus olfactory organs is a pervasive feature of animal evolution. Comparing Drosophila species, we find that larger eyes correlate with smaller antennae, where olfactory organs reside, and narrower faces. We demonstrate that this tradeoff arises through differential subdivision of the head primordium into visual versus non-visual fields. Specification of the visual field requires a highly-conserved eye development gene called eyeless in flies and Pax6 in humans. We discover that changes in the temporal regulation of eyeless expression during development is a conserved mechanism for sensory trade-offs within and between Drosophila species. We identify a natural single nucleotide polymorphism in the cis-regulatory region of eyeless that is sufficient to alter its temporal regulation and eye size. Because Pax6 is a conserved regulator of sensory placode subdivision, we propose that alterations in the mutual repression between sensory territories is a conserved mechanism for sensory trade-offs in animals.
biorxiv developmental-biology 0-100-users 2018Enzymatic DNA synthesis for digital information storage, bioRxiv, 2018-06-16
AbstractDNA is an emerging storage medium for digital data but its adoption is hampered by limitations of phosphoramidite chemistry, which was developed for single-base accuracy required for biological functionality. Here, we establish a de novo enzymatic DNA synthesis strategy designed from the bottom-up for information storage. We harness a template-independent DNA polymerase for controlled synthesis of sequences with user-defined information content. We demonstrate retrieval of 144-bits, including addressing, from perfectly synthesized DNA strands using batch-processed Illumina and real-time Oxford Nanopore sequencing. We then develop a codec for data retrieval from populations of diverse but imperfectly synthesized DNA strands, each with a ~30% error tolerance. With this codec, we experimentally validate a kilobyte-scale design which stores 1 bit per nucleotide. Simulations of the codec support reliable and robust storage of information for large-scale systems. This work paves the way for alternative synthesis and sequencing strategies to advance information storage in DNA.
biorxiv synthetic-biology 100-200-users 2018