Droplet-based combinatorial indexing for massive scale single-cell epigenomics, bioRxiv, 2019-04-18
AbstractWhile recent technical advancements have facilitated the mapping of epigenomes at single-cell resolution, the throughput and quality of these methods have limited the widespread adoption of these technologies. Here, we describe a droplet microfluidics platform for single-cell assay for transposase accessible chromatin (scATAC-seq) for high-throughput single-cell profiling of chromatin accessibility. We use this approach for the unbiased discovery of cell types and regulatory elements within the mouse brain. Further, we extend the throughput of this approach by pairing combinatorial indexing with droplet microfluidics, enabling single-cell studies at a massive scale. With this approach, we measure chromatin accessibility across resting and stimulated human bone marrow derived cells to reveal changes in the cis- and trans- regulatory landscape across cell types and upon stimulation conditions at single-cell resolution. Altogether, we describe a total of 502,207 single-cell profiles, demonstrating the scalability and flexibility of this droplet-based platform.
biorxiv genomics 200-500-users 2019Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion, bioRxiv, 2019-04-18
AbstractUnderstanding complex tissues requires single-cell deconstruction of gene regulation with precision and scale. Here we present a massively parallel droplet-based platform for mapping transposase-accessible chromatin in tens of thousands of single cells per sample (scATAC-seq). We obtain and analyze chromatin profiles of over 200,000 single cells in two primary human systems. In blood, scATAC-seq allows marker-free identification of cell type-specific cis- and trans-regulatory elements, mapping of disease-associated enhancer activity, and reconstruction of trajectories of differentiation from progenitors to diverse and rare immune cell types. In basal cell carcinoma, scATAC-seq reveals regulatory landscapes of malignant, stromal, and immune cell types in the tumor microenvironment. Moreover, scATAC-seq of serial tumor biopsies before and after PD-1 blockade allows identification of chromatin regulators and differentiation trajectories of therapy-responsive intratumoral T cell subsets, revealing a shared regulatory program driving CD8+ T cell exhaustion and CD4+ T follicular helper cell development. We anticipate that droplet-based single-cell chromatin accessibility will provide a broadly applicable means of identifying regulatory factors and elements that underlie cell type and function.
biorxiv genomics 200-500-users 2019Chitin perception in plasmodesmata identifies subcellular, context-specific immune signalling in plants, bioRxiv, 2019-04-17
AbstractThe plasma membrane (PM) that lines plasmodesmata has a distinct protein and lipid composition, underpinning specific regulation of these connections between cells. The plasmodesmal PM can integrate extracellular signals differently from the cellular PM, but it is not known how this specificity is established or how a single stimulus can trigger independent signalling cascades in neighbouring membrane domains. Here we have used the fungal elicitor chitin to investigate signal integration and responses at the plasmodesmal PM. We found that the plasmodesmal PM employs a receptor complex composed of the LysM receptors LYM2 and LYK4 which respectively change their location and interactions in response to chitin. Downstream, signalling is transmitted via a specific phosphorylation signature of an NADPH oxidase and localised callose synthesis that causes plasmodesmata closure. This demonstrates the plasmodesmal PM deploys both plasmodesmata-specific components and differential activation of PM-common components to independently integrate an immune signal.
biorxiv plant-biology 0-100-users 2019Benchmarking of alignment-free sequence comparison methods, bioRxiv, 2019-04-16
ABSTRACTAlignment-free (AF) sequence comparison is attracting persistent interest driven by data-intensive applications. Hence, many AF procedures have been proposed in recent years, but a lack of a clearly defined benchmarking consensus hampers their performance assessment. Here, we present a community resource (<jatsext-link xmlnsxlink=httpwww.w3.org1999xlink ext-link-type=uri xlinkhref=httpafproject.org>httpafproject.org<jatsext-link>) to establish standards for comparing alignment-free approaches across different areas of sequence-based research. We characterize 74 AF methods available in 24 software tools for five research applications, namely, protein sequence classification, gene tree inference, regulatory element detection, genome-based phylogenetic inference and reconstruction of species trees under horizontal gene transfer and recombination events. The interactive web service allows researchers to explore the performance of alignment-free tools relevant to their data types and analytical goals. It also allows method developers to assess their own algorithms and compare them with current state-of-the-art tools, accelerating the development of new, more accurate AF solutions.
biorxiv bioinformatics 100-200-users 2019Developmentally regulated Shh expression is robust to TAD perturbations, bioRxiv, 2019-04-16
AbstractTopologically Associating Domains (TADs) have been proposed to both guide and constrain enhancer activity. Shh is located within a TAD known to contain all its enhancers. To investigate the importance of chromatin conformation and TAD integrity on developmental gene regulation, we have manipulated the Shh TAD – creating internal deletions, deleting CTCF sites including those at TAD boundaries, as well as larger deletions and inversions of TAD boundaries. Chromosome conformation capture and fluorescence in situ hybridisation assays were used the investigate changes in chromatin conformation that result from these manipulations. Our data suggest that the substantial alteration of TAD structure has no readily detectable effect on Shh expression patterns during development – except where enhancers are deleted - and results in no detectable phenotypes. Only in the case of a larger deletion of one TAD boundary could some ectopic influence of the Shh limb enhancer be detected on a gene - Mnx1 in the neighbouring TAD. Our data suggests that, contrary to expectations, the developmental regulation of Shh expression is remarkably robust to TAD perturbations.
biorxiv developmental-biology 200-500-users 2019Extensive impact of low-frequency variants on the phenotypic landscape at population-scale, bioRxiv, 2019-04-16
AbstractGenome-wide association studies (GWAS) allows to dissect the genetic basis of complex traits at the population level1. However, despite the extensive number of trait-associated loci found, they often fail to explain a large part of the observed phenotypic variance2–4. One potential source of this discrepancy could be the preponderance of undetected low-frequency genetic variants in natural populations5,6. To increase the allele frequency of those variants and assess their phenotypic effects at the population level, we generated a diallel panel consisting of 3,025 hybrids, derived from pairwise crosses between a subset of natural isolates from a completely sequenced 1,011 Saccharomyces cerevisiae population. We examined each hybrid across a large number of growth traits, resulting in a total of 148,225 crosstrait combinations. Parental versus hybrid regression analysis showed that while most phenotypic variance is explained by additivity, a significant proportion (29%) is governed by non-additive effects. This is confirmed by the fact that a majority of complete dominance is observed in 25% of the traits. By performing GWAS on the diallel panel, we detected 1,723 significantly associated genetic variants, with 16.3% of them being low-frequency variants in the initial population. These variants, which would not be detected using classical GWAS, explain 21% of the phenotypic variance on average. Altogether, our results demonstrate that low-frequency variants should be accounted for as they contribute to a large part of the phenotypic variation observed in a population.
biorxiv genomics 100-200-users 2019