Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT, bioRxiv, 2017-10-20
ABSTRACTHundreds of cell types are generated during development, but their lineage relationships are largely elusive. Here we report a technology, scGESTALT, which combines cell type identification by single-cell RNA sequencing with lineage recording by cumulative barcode editing. We sequenced ~60,000 transcriptomes from the juvenile zebrafish brain and identified more than 100 cell types and marker genes. We engineered an inducible system that combines early and late barcode editing and isolated thousands of single-cell transcriptomes and their associated barcodes. The large diversity of edited barcodes and cell types enabled the generation of lineage trees with hundreds of branches. Inspection of lineage trajectories identified restrictions at the level of cell types and brain regions and helped uncover gene expression cascades during differentiation. These results establish scGESTALT as a new and widely applicable tool to simultaneously characterize the molecular identities and lineage histories of thousands of cells during development and disease.
biorxiv developmental-biology 100-200-users 2017Whole organism lineage tracing by combinatorial and cumulative genome editing, bioRxiv, 2016-05-12
AbstractMulticellular systems develop from single cells through a lineage, but current lineage tracing approaches scale poorly to whole organisms. Here we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of CRISPRCas9 target sites, records lineage relationships in the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable, and that thousands of lineage-informative barcode alleles can be generated. We find that most cells in adult zebrafish organs derive from relatively few embryonic progenitors. Genome editing of synthetic target arrays for lineage tracing (GESTALT) will help generate large-scale maps of cell lineage in multicellular systems.
biorxiv developmental-biology 100-200-users 2016