Rate variation in the evolution of non-coding DNA associated with social evolution in bees, bioRxiv, 2018-11-08

The evolutionary origins of eusociality represent increases in complexity from individual to caste-based, group reproduction. These behavioral transitions have been hypothesized to go hand-in-hand with an increased ability to regulate when and where genes are expressed. Bees have convergently evolved eusociality up to five times, providing a framework to test this hypothesis. To examine potential links between putative gene regulatory elements and social evolution, we compare alignable, non-coding sequences in eleven diverse bee species, encompassing three independent origins of reproductive division of labor and two elaborations of eusocial complexity. We find that rates of evolution in a number of non-coding sequences correlate with key social transitions in bees. Interestingly, while we find little evidence for convergent rate changes associated with independent origins of social behavior, a number of molecular pathways exhibit convergent rate changes in conjunction with subsequent elaborations of social organization. We also present evidence that many novel non-coding regions may have been recruited alongside the origin of sociality in corbiculate bees; these loci could represent gene regulatory elements associated with division of labor within this group. Thus, our findings are consistent with the hypothesis that gene regulatory innovations are associated with the evolution of eusociality and illustrate how a thorough examination of both coding and non-coding sequence can provide a more complete understanding of the molecular mechanisms underlying behavioral evolution.

biorxiv evolutionary-biology 0-100-users 2018

tartan underlies the evolution of male Drosophila genital morphology, bioRxiv, 2018-11-05

AbstractMale genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic basis of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here we show that natural variation in clasper size and bristle number between Drosophila mauritiana and D. simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell-cell interactions and affinity differences. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans but differences in the expression of this gene in developing genitalia suggest cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analysis of reciprocal hemizyotes that are genetically identical, except for which species the functional allele of trn is from, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore we have identified the first gene underlying evolutionary change in the size of a male genital organ, which will help to better understand the rapid diversification of these structures and the regulation and evolution of organ size more broadly.Significance StatementThe morphology of male genital organs evolves rapidly driven by sexual selection. However, little is known about the genes underlying genitalia differences between species. Identifying these genes is key to understanding how sexual selection acts on development to produce rapid phenotypic change. We have found that the gene tartan underlies differences between male Drosophila mauritiana and D. simulans in the size and bristle number of the claspers - genital projections that grasp the female during copulation. Moreover, since tartan encodes a protein that is involved in cell affinity, this may represent a new developmental mechanism for morphological change. Therefore, our study provides new insights into genetic and developmental bases for the rapid evolution of male genitalia and organ size more generally.

biorxiv evolutionary-biology 0-100-users 2018

The architecture of cell differentiation in choanoflagellates and sponge choanocytes, bioRxiv, 2018-10-29

SUMMARYCollar cells are ancient animal cell types which are conserved across the animal kingdom [1] and their closest relatives, the choanoflagellates [2]. However, little is known about their ancestry, their subcellular architecture, or how they differentiate. The choanoflagellate Salpingoeca rosetta [3] expresses genes necessary for animal multicellularity and development [4] and can alternate between unicellular and multicellular states [3,5], making it a powerful model to investigate the origin of animal multicellularity and mechanisms underlying cell differentiation [6,7]. To compare the subcellular architecture of solitary collar cells in S. rosetta with that of multicellular “rosettes” and collar cells in sponges, we reconstructed entire cells in 3D through transmission electron microscopy on serial ultrathin sections. Structural analysis of our 3D reconstructions revealed important differences between single and colonial choanoflagellate cells, with colonial cells exhibiting a more amoeboid morphology consistent with relatively high levels of macropinocytotic activity. Comparison of multiple reconstructed rosette colonies highlighted the variable nature of cell sizes, cell-cell contact networks and colony arrangement. Importantly, we uncovered the presence of elongated cells in some rosette colonies that likely represent a distinct and differentiated cell type. Intercellular bridges within choanoflagellate colonies displayed a variety of morphologies and connected some, but not all, neighbouring cells. Reconstruction of sponge choanocytes revealed both ultrastructural commonalities and differences in comparison to choanoflagellates. Choanocytes and colonial choanoflagellates are typified by high amoeboid cell activity. In both, the number of microvilli and volumetric proportion of the Golgi apparatus are comparable, whereas choanocytes devote less of their cell volume to the nucleus and mitochondria than choanoflagellates and more of their volume to food vacuoles. Together, our comparative reconstructions uncover the architecture of cell differentiation in choanoflagellates and sponge choanocytes and constitute an important step in reconstructing the cell biology of the last common ancestor of the animal kingdom.

biorxiv evolutionary-biology 100-200-users 2018

Bacterial contribution to genesis of the novel germ line determinant oskar, bioRxiv, 2018-10-26

New cellular functions and developmental processes can evolve by modifying the functions or regulation of preexisting genes, but the creation of new genes and their contributions to novel processes is less well understood. New genes can arise not only from mutations or rearrangements of existing sequences, but also via acquisition of foreign DNA, also called horizontal gene transfer (HGT). Here we present evidence that HGT contributed to the creation of a novel gene indispensable for reproduction in some insects. The oskar gene evolved to fulfil a crucial role in insect germ cell formation, but was long considered a novel gene with unknown evolutionary origins. Our analysis of over 100 Oskar sequences suggests that Oskar arose through a novel gene formation history involving fusion of eukaryotic and prokaryotic sequences. One of its two conserved domains (LOTUS), was likely present in the genome of a last common insect ancestor, while the second (OSK) domain appears to have been acquired through horizontal transfer of a bacterial GDSL-like lipase domain. Our evidence suggests that the bacterial contributor of the OSK domain may have been a germ line endosymbiont. This shows that gene origin processes often considered highly unusual, including HGT and de novo coding region evolution, can give rise to novel genes that can both participate in pre-existing gene regulatory networks, and also facilitate the evolution of novel developmental mechanisms.

biorxiv evolutionary-biology 100-200-users 2018

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo