Vision using multiple distinct rod opsins in deep-sea fishes, bioRxiv, 2018-09-23
AbstractVertebrate vision is accomplished through a set of light-sensitive photopigments, which are located in the photoreceptors of the retina and consist of a visual opsin protein bound to a chromophore. In dim-light, vertebrates generally rely upon a single rod opsin (RH1) for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their RH1 gene repertoires. Amongst these, the silver spinyfin (Diretmus argenteus Johnson 1863) stands out as having the highest number of visual opsins known for animals to date (2 cone and 38 rod opsins). Spinyfins simultaneously express up to 14 RH1s encoding for photopigments with different peak spectral sensitivities (λmax=448-513 nm) that cover the range of the residual daylight, as well as the bioluminescence spectrum present in the deep-sea. Our findings present novel molecular and functional evidence for the recurrent evolution of multiple rod opsin-based vision in vertebrates.SHORT ABSTRACTContrary to the single rod opsin used by most vertebrates, some fishes use multiple rod opsins for vision in the dimly lit deep-sea.
biorxiv evolutionary-biology 0-100-users 2018The genomic view of diversification, bioRxiv, 2018-09-11
ABSTRACTEvolutionary relationships between species are traditionally represented in the form of a tree, called the species tree. The reconstruction of the species tree from molecular data is hindered by frequent conflicts between gene genealogies. A standard way of dealing with this issue is to postulate the existence of a unique species tree where disagreements between gene trees are explained by incomplete lineage sorting (ILS) due to random coalescences of gene lineages inside the edges of the species tree. This paradigm, known as the multi-species coalescent (MSC), is constantly violated by the ubiquitous presence of gene flow revealed by empirical studies, leading to topological incongruences of gene trees that cannot be explained by ILS alone. Here we argue that this paradigm should be revised in favor of a vision acknowledging the importance of gene flow and where gene histories shape the species tree rather than the opposite. We propose a new, plastic framework for modeling the joint evolution of gene and species lineages relaxing the hierarchy between the species tree and gene trees. We implement this framework in two mathematical models called the gene-based diversification models (GBD) 1) GBD-forward, following all evolving genomes and thus very intensive computationally and 2) GBD-backward, based on coalescent theory and thus more efficient. Each model features four parameters tuning colonization, mutation, gene flow and reproductive isolation. We propose a quick inference method based on the differences between gene trees and use it to evaluate the amount of gene flow in two empirical data-sets. We find that in these data-sets, gene tree distributions are better explained by the best fitting GBD model than by the best fitting MSC model. This work should pave the way for approaches of diversification using the richer signal contained in genomic evolutionary histories rather than in the mere species tree.
biorxiv evolutionary-biology 100-200-users 2018Nanopore-based genome assembly and the evolutionary genomics of basmati rice, bioRxiv, 2018-08-20
ABSTRACTBACKGROUNDThe circum-basmati group of cultivated Asian rice (Oryza sativa) contains many iconic varieties and is widespread in the Indian subcontinent. Despite its economic and cultural importance, a high-quality reference genome is currently lacking, and the group’s evolutionary history is not fully resolved. To address these gaps, we used long-read nanopore sequencing and assembled the genomes of two circum-basmati rice varieties, Basmati 334 and Dom Sufid.RESULTSWe generated two high-quality, chromosome-level reference genomes that represented the 12 chromosomes of Oryza. The assemblies showed a contig N50 of 6.32Mb and 10.53Mb for Basmati 334 and Dom Sufid, respectively. Using our highly contiguous assemblies we characterized structural variations segregating across circum-basmati genomes. We discovered repeat expansions not observed in japonica—the rice group most closely related to circum- basmati—as well as presenceabsence variants of over 20Mb, one of which was a circum- basmati-specific deletion of a gene regulating awn length. We further detected strong evidence of admixture between the circum-basmati and circum-aus groups. This gene flow had its greatest effect on chromosome 10, causing both structural variation and single nucleotide polymorphism to deviate from genome-wide history. Lastly, population genomic analysis of 78 circum-basmati varieties showed three major geographically structured genetic groups (1) BhutanNepal group, (2) IndiaBangladeshMyanmar group, and (3) IranPakistan group.CONCLUSIONAvailability of high-quality reference genomes from nanopore sequencing allowed functional and evolutionary genomic analyses, providing genome-wide evidence for gene flow between circum-aus and circum-basmati, the nature of circum-basmati structural variation, and the presenceabsence of genes in this important and iconic rice variety group.
biorxiv evolutionary-biology 100-200-users 2018Clonal evolution and genome stability in a 2,500-year-old fungal individual, bioRxiv, 2018-07-26
AbstractIn the late 1980s, a genetic individual of the fungus Armillaria gallica that extended over at least 37 hectares of forest floor and encompassed hundreds of tree root systems was discovered on the Upper Peninsula of Michigan. Based on observed growth rates, the individual was estimated to be at least 1500 years old with a mass of more than 105 kg. Nearly three decades on, we returned to the site of individual for new sampling. We report here that the same genetic individual of A. gallica is still alive on its original site, but we estimated that it is older and larger than originally estimated, at least 2,500 years and 4 × 105 kg, respectively. We also show that mutation has occurred within the somatic cells of the individual, reflecting its historical pattern of growth from a single point. The overall rate of mutation, however, was extremely low. The large individual of A. gallica has been remarkably resistant to genomic change as it has persisted in place.
biorxiv evolutionary-biology 0-100-users 2018Reduced signal for polygenic adaptation of height in UK Biobank, bioRxiv, 2018-06-25
AbstractSeveral recent papers have reported strong signals of selection on European polygenic height scores. These analyses used height effect estimates from the GIANT consortium and replication studies. Here, we describe a new analysis based on the the UK Biobank (UKB), a large, independent dataset. We find that the signals of selection using UKB effect-size estimates for height are strongly attenuated or absent. We also provide evidence that previous analyses were confounded by population stratification Therefore, the conclusion of strong polygenic adaptation now lacks support. Moreover, these discrepancies highlight (1) that methods for correcting for population stratification in GWAS may not always be sufficient for polygenic trait analyses, and (2) that claims of differences in polygenic scores between populations should be treated with caution until these issues are better understood.
biorxiv evolutionary-biology 200-500-users 2018Widespread transcriptional scanning in the testis modulates gene evolution rates, bioRxiv, 2018-03-14
The testis expresses the largest number of genes of any mammalian organ, a finding that has long puzzled molecular biologists. Analyzing our single-cell transcriptomic maps of human and mouse spermatogenesis, we provide evidence that this widespread transcription serves to maintain DNA sequence integrity in the male germline by correcting DNA damage through 'transcriptional scanning'. Supporting this model, we find that genes expressed during spermatogenesis display lower mutation rates on the transcribed strand and have low diversity in the population. Moreover, this effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed genes, which in our model do not benefit from transcriptional scanning, diverge faster over evolutionary time-scales and are enriched for sensory and immune-defense functions. Collectively, we propose that transcriptional scanning modulates germline mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of genes but allowing for fast evolution in a specific subset.
biorxiv evolutionary-biology 200-500-users 2018