Population-genomic inference of the strength and timing of selection against gene flow, bioRxiv, 2016-09-02
AbstractThe interplay of divergent selection and gene flow is key to understanding how populations adapt to local environments and how new species form. Here, we use DNA polymorphism data and genome-wide variation in recombination rate to jointly infer the strength and timing of selection, as well as the baseline level of gene flow under various demographic scenarios. We model how divergent selection leads to a genome-wide negative correlation between recombination rate and genetic differentiation among populations. Our theory shows that the selection density, i.e. the selection coefficient per base pair, is a key parameter underlying this relationship. We then develop a procedure for parameter estimation that accounts for the confounding effect of background selection. Applying this method to two datasets from Mimulus guttatus, we infer a strong signal of adaptive divergence in the face of gene flow between populations growing on and off phytotoxic serpentine soils. However, the genome-wide intensity of this selection is not exceptional compared to what M. guttatus populations may typically experience when adapting to local conditions. We also find that selection against genome-wide introgression from the selfing sister species M. nasutus has acted to maintain a barrier between these two species over at least the last 250 ky. Our study provides a theoretical framework for linking genome-wide patterns of divergence and recombination with the underlying evolutionary mechanisms that drive this differentiation.
biorxiv evolutionary-biology 100-200-users 2016The Genetic cost of Neanderthal introgression, bioRxiv, 2015-10-31
AbstractApproximately 2-4% of genetic material in human populations outside Africa is derived from Neanderthals who interbred with anatomically modern humans. Recent studies have shown that this Neanderthal DNA is depleted around functional genomic regions; this has been suggested to be a consequence of harmful epistatic interactions between human and Neanderthal alleles. However, using published estimates of Neanderthal inbreeding and the distribution of mutational fitness effects, we infer that Neanderthals had at least 40% lower fitness than humans on average; this increased load predicts the reduction in Neanderthal introgression around genes without the need to invoke epistasis. We also predict a residual Neanderthal mutational load in non-Africans, leading to a fitness reduction of at least 0.5%. This effect of Neanderthal admixture has been left out of previous debate on mutation load differences between Africans and non-Africans. We also show that if many deleterious mutations are recessive, the Neanderthal admixture fraction could increase over time due to the protective effect of Neanderthal haplotypes against deleterious alleles that arose recently in the human population. This might partially explain why so many organisms retain gene flow from other species and appear to derive adaptive benefits from introgression.
biorxiv evolutionary-biology 0-100-users 2015A Chronological Atlas of Natural Selection in the Human Genome during the Past Half-million Years, bioRxiv, 2015-05-06
The spatiotemporal distribution of recent human adaptation is a long standing question. We developed a new coalescent-based method that collectively assigned human genome regions to modes of neutrality or to positive, negative, or balancing selection. Most importantly, the selection times were estimated for all positive selection signals, which ranged over the last half million years, penetrating the emergence of anatomically modern human (AMH). These selection time estimates were further supported by analyses of the genome sequences from three ancient AMHs and the Neanderthals. A series of brain function-related genes were found to carry signals of ancient selective sweeps, which may have defined the evolution of cognitive abilities either before Neanderthal divergence or during the emergence of AMH. Particularly, signals of brain evolution in AMH are strongly related to Alzheimer's disease pathways. In conclusion, this study reports a chronological atlas of natural selection in Human.
biorxiv evolutionary-biology 100-200-users 2015Towards a new history and geography of human genes informed by ancient DNA, bioRxiv, 2014-03-22
Genetic information contains a record of the history of our species, and technological advances have transformed our ability to access this record. Many studies have used genome-wide data from populations today to learn about the peopling of the globe and subsequent adaptation to local conditions. Implicit in this research is the assumption that the geographic locations of people today are informative about the geographic locations of their ancestors in the distant past. However, it is now clear that long-range migration, admixture and population replacement have been the rule rather than the exception in human history. In light of this, we argue that it is time to critically re-evaluate current views of the peopling of the globe and the importance of natural selection in determining the geographic distribution of phenotypes. We specifically highlight the transformative potential of ancient DNA. By accessing the genetic make-up of populations living at archaeologically-known times and places, ancient DNA makes it possible to directly track migrations and responses to natural selection.
biorxiv evolutionary-biology 0-100-users 2014