Connectomics analysis reveals first, second, and third order thermosensory and hygrosensory neurons in the adult Drosophila brain, bioRxiv, 2020-01-21

SUMMARYAnimals exhibit innate and learned preferences for temperature and humidity – conditions critical for their survival and reproduction. Here, we leveraged a whole adult brain electron microscopy volume to study the circuitry associated with antennal thermosensory and hygrosensory neurons, which target specific ventroposterior (VP) glomeruli in the Drosophila melanogaster antennal lobe. We have identified two new VP glomeruli, in addition to the five known ones, and the projection neurons (VP PNs) that relay VP information to higher brain centres, including the mushroom body and lateral horn, seats of learned and innate olfactory behaviours, respectively. Focussing on the mushroom body lateral accessory calyx (lACA), a known thermosensory neuropil, we present a comprehensive connectome by reconstructing neurons downstream of heating- and cooling-responsive VP PNs. We find that a few lACA-associated mushroom body intrinsic neurons (Kenyon cells) solely receive thermosensory inputs, while most receive additional olfactory and thermo- or hygrosensory PN inputs in the main calyx. Unexpectedly, we find several classes of lACA-associated neurons that form a local network with outputs to other brain neuropils, suggesting that the lACA serves as a general hub for thermosensory circuitry. For example, we find DN1 pacemaker neurons that link the lACA to the accessory medulla, likely mediating temperature-based entrainment of the circadian clock. Finally, we survey strongly connected downstream partners of VP PNs across the protocerebrum; these include a descending neuron that receives input mainly from dry-responsive VP PNs, meaning that just two synapses might separate hygrosensory inputs from motor neurons in the nerve cord. (249)HIGHLIGHTS<jatslist list-type=bullet><jatslist-item>Two novel thermohygrosensory glomeruli in the fly antennal lobe<jatslist-item><jatslist-item>First complete set of thermosensory and hygrosensory projection neurons<jatslist-item><jatslist-item>First connectome for a thermosensory centre, the lateral accessory calyx<jatslist-item><jatslist-item>Novel third order neurons, including a link to the circadian clock<jatslist-item>

biorxiv neuroscience 0-100-users 2020

AAV Ablates Neurogenesis in the Adult Murine Hippocampus, bioRxiv, 2020-01-20

ABSTRACTRecombinant adeno-associated virus (rAAV) has been widely used as a viral vector across mammalian biology and has been shown to be safe and effective in human gene therapy. We demonstrate that neural progenitor cells (NPCs) and immature dentate granule cells (DGCs) within the adult murine hippocampus are particularly sensitive to rAAV-induced cell death. Cell loss is dose dependent and nearly complete at experimentally relevant viral titers. rAAV-induced cell death is rapid and persistent, with loss of BrdU-labeled cells within 18 hours post-injection and no evidence of recovery of adult neurogenesis at 3 months post-injection. The remaining mature DGCs appear hyperactive 4 weeks post-injection based on immediate early gene expression, consistent with previous studies investigating the effects of attenuating adult neurogenesis. In vitro application of AAV or electroporation of AAV2 inverted terminal repeats (ITRs) is sufficient to induce cell death. Efficient transduction of the dentate gyrus (DG)—without ablating adult neurogenesis—can be achieved by injection of rAAV2-retro serotyped virus into CA3. rAAV2-retro results in efficient retrograde labeling of mature DGCs and permits in vivo 2-photon calcium imaging of dentate activity while leaving adult neurogenesis intact. These findings expand on recent reports implicating rAAV-linked toxicity in stem cells and other cell types and suggest that future work using rAAV as an experimental tool in the DG and as a gene therapy for diseases of the central nervous system (CNS) should be carefully evaluated.

biorxiv neuroscience 100-200-users 2020

 

Created with the audiences framework by Jedidiah Carlson

Powered by Hugo